Circuit-QED for Multi-Loop Fluxonium-Type Qubits
Abstract
:1. Introduction
2. Multi-Loop Fluxonium
2.1. Circuit and Independent Variable Selection
2.2. Lagrangian Formulation
2.3. Redistributing External Fluxes
2.4. Hamiltonian Formulation
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Table of Symbols
Symbol | Description |
---|---|
Capacitance of the readout resonator | |
Capacitance of the i-th Josephson junction | |
Inductance of the readout resonator | |
Inductance of the i-th loop in the qubit section | |
Shared inductance between resonator and first loop | |
Josephson energy of the i-th junction | |
Charging energy | |
Inductive energy | |
Node flux variable at node i | |
External magnetic flux threading loop i | |
Magnetic flux quantum, | |
Generalized conjugate charge variable to | |
Reduced phase variable: | |
Capacitance matrix | |
Inductance matrix | |
Transformation matrix to normal modes | |
Vector of normal mode flux variables | |
Flux coupling vector (external flux contributions) | |
Lagrangian | |
Hamiltonian |
Appendix B. Construction of the Transformation Matrix
References
- Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A Quantum Engineer’s Guide to Superconducting Qubits. Appl. Phys. Rev. 2019, 6, 021318. [Google Scholar] [CrossRef]
- Kjaergaard, M.; Schwartz, M.E.; Braumüller, J.; Krantz, P.; Wang, J.I.-J.; Gustavsson, S.; Oliver, W.D. Superconducting Qubits: Current State of Play. Annu. Rev. Condens. Matter Phys. 2020, 11, 369–395. [Google Scholar] [CrossRef]
- Huang, H.-L.; Wu, D.; Fan, D.; Zhu, X. Superconducting Quantum Computing: A Review. Sci. China Inf. Sci. 2020, 63, 180501. [Google Scholar] [CrossRef]
- Ezratty, O. Perspective on Superconducting Qubit Quantum Computing. Eur. Phys. J. A 2023, 59, 94. [Google Scholar] [CrossRef]
- Mamgain, A.; Khaire, S.S.; Singhal, U.; Ahmad, I.; Patel, L.A.; Helambe, K.D.; Majumder, S.; Singh, V.; Suri, B. A Review of Developments in Superconducting Quantum Processors. J. Indian Inst. Sci. 2022, 103, 633–669. [Google Scholar] [CrossRef]
- Nguyen, L.B.; Lin, Y.-H.; Somoroff, A.; Mencia, R.; Grabon, N.; Manucharyan, V.E. High-Coherence Fluxonium Qubit. Phys. Rev. X 2019, 9, 041041. [Google Scholar] [CrossRef]
- Siddiqi, I. Engineering High-Coherence Superconducting Qubits. Nat. Rev. Mater. 2021, 6, 875–891. [Google Scholar] [CrossRef]
- Napoli, S.; Mercurio, A.; Lamberto, D.; Zappalà, A.; Di Stefano, O.; Savasta, S. Circuit QED Spectra in the Ultrastrong Coupling Regime: How They Differ from Cavity QED. arXiv 2024, arXiv:2408.16558. [Google Scholar] [CrossRef]
- Zhu, G.; Ferguson, D.G.; Manucharyan, V.E.; Koch, J. Circuit QED with Fluxonium Qubits: Theory of the Dispersive Regime. Phys. Rev. B 2013, 87, 024510. [Google Scholar] [CrossRef]
- Rocha-Aguilera, D.; Molina-Reyes, J.; Méndez-Jerónimo, G. Superconducting Qubits Based on Al Josephson Junctions and Coplanar Waveguide Resonators. In Proceedings of the 2022 IEEE International Conference on Engineering Veracruz (ICEV), Boca del Río, Mexico, 24–27 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Stern, M.; Kubo, Y.; Grezes, C.; Vion, D.; Esteve, D.; Bertet, P. Flux Qubits in 3D Cavities. In Research in Optical Sciences; OSA Technical Digest (Online); Optica Publishing Group: Washington, DC, USA, 2014; Paper QW1A.3. [Google Scholar] [CrossRef]
- Rosenfeld, E.L.; Hann, C.T.; Schuster, D.I.; Matheny, M.H.; Clerk, A.A. High-Fidelity Two-Qubit Gates between Fluxonium Qubits with a Resonator Coupler. PRX Quantum 2024, 5, 040317. [Google Scholar] [CrossRef]
- Mencia, R.A.; Lin, W.J.; Cho, H.; Vavilov, M.G.; Manucharyan, V.E. Integer Fluxonium Qubit. PRX Quantum 2024, 5, 040318. [Google Scholar] [CrossRef]
- Rieger, D.; Günzler, S.; Spiecker, M.; Paluch, P.; Winkel, P.; Hahn, L.; Hohmann, J.K.; Bacher, A.; Wernsdorfer, W.; Pop, I.M. Granular Aluminium Nanojunction Fluxonium Qubit. Nat. Mater. 2023, 22, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Hays, M.; Sung, Y.; Kannan, B.; An, J.; Di Paolo, A.; Karamlou, A.H.; Hazard, T.M.; Azar, K.; Kim, D.K.; et al. High-Fidelity, Frequency-Flexible Two-Qubit Fluxonium Gates with a Transmon Coupler. Phys. Rev. X 2023, 13, 031003. [Google Scholar] [CrossRef]
- Somoroff, A.; Ficheux, Q.; Mencia, R.A.; Xiong, H.; Kuzmin, R.; Manucharyan, V.E. Millisecond Coherence in a Superconducting Qubit. Phys. Rev. Lett. 2023, 130, 267001. [Google Scholar] [CrossRef]
- Thibodeau, M.; Kou, A.; Clark, B.K. The Floquet Fluxonium Molecule: Driving Down Dephasing in Coupled Superconducting Qubits. PRX Quantum 2024, 5, 040314. [Google Scholar] [CrossRef]
- Ardati, W.; Léger, S.; Kumar, S.; Suresh, V.N.; Nicolas, D.; Mori, C.; D’Esposito, F.; Vakhtel, T.; Buisson, O. Using Bifluxon Tunneling to Protect the Fluxonium Qubit. Phys. Rev. X 2024, 14, 041014. [Google Scholar] [CrossRef]
- Nesterov, K.N.; Pechenezhskiy, I.V. Measurement-Induced State Transitions in Dispersive Qubit-Readout Schemes. Phys. Rev. Appl. 2024, 22, 064038. [Google Scholar] [CrossRef]
- Nie, K.; Bista, A.; Chow, K.; Pfaff, W.; Kou, A. Parametrically Controlled Microwave-Photonic Interface for the Fluxonium. Phys. Rev. Appl. 2024, 22, 054021. [Google Scholar] [CrossRef]
- Lin, W.-J.; Cho, H.; Chen, Y.; Vavilov, M.G.; Wang, C.; Manucharyan, V.E. Verifying the Analogy between Transversely Coupled Spin-1/2 Systems and Inductively-Coupled Fluxoniums. New J. Phys. 2025, 27, 033012. [Google Scholar] [CrossRef]
- Wang, T.; Wu, F.; Wang, F.; Ma, X.; Zhang, G.; Chen, J.; Deng, H.; Gao, R.; Hu, R.; Ma, L.; et al. Efficient Initialization of Fluxonium Qubits Based on Auxiliary Energy Levels. Phys. Rev. Lett. 2024, 132, 230601. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, G.; Wu, F.; Bao, F.; Chang, X.; Chen, J.; Deng, H.; Gao, R.; Gao, X.; Hu, L.; et al. Native Approach to Controlled-Z Gates in Inductively Coupled Fluxonium Qubits. Phys. Rev. Lett. 2024, 132, 060602. [Google Scholar] [CrossRef] [PubMed]
- Hita-Pérez, M.; Jaumà, G.; Pino, M.; Garcia-Ripoll, J.J. Ultrastrong Capacitive Coupling of Flux Qubits. Phys. Rev. Appl. 2022, 17, 014028. [Google Scholar] [CrossRef]
- Mazhorin, G.S.; Kaz’mina, A.S.; Chudakova, T.A.; Simakov, I.A.; Maleeva, N.A.; Moskalenko, I.N.; Ryazanov, V.V. Scalable Quantum Processor Based on Superconducting Fluxonium Qubits. Radiophys. Quantum Electron. 2024, 66, 893–906. [Google Scholar] [CrossRef]
- Manucharyan, V.E.; Koch, J.; Glazman, L.I.; Devoret, M.H. Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets. Science 2009, 326, 113. [Google Scholar] [CrossRef]
- Gusenkova, D.; Valenti, F.; Spiecker, M.; Günzler, S.; Paluch, P.; Rieger, D.; Pioraş-Ţimbolmaş, L.M.; Zârbo, L.P.; Casali, N.; Colantoni, I.; et al. Operating in a Deep Underground Facility Improves the Locking of Gradiometric Fluxonium Qubits at the Sweet Spots. Appl. Phys. Lett. 2022, 120, 054001. [Google Scholar] [CrossRef]
- Hita-Perez, M.; Jauma, G.; Pino, M.; Garcia-Ripoll, J.J. Three-Josephson Junctions Flux Qubit Couplings. Appl. Phys. Lett. 2021, 119, 222601. [Google Scholar] [CrossRef]
- Gusenkova, D.; Spiecker, M.; Gebauer, R.; Willsch, M.; Willsch, D.; Valenti, F.; Karcher, N.; Grünhaupt, L.; Takmakov, I.; Winkel, P.; et al. Quantum Nondemolition Dispersive Readout of a Superconducting Artificial Atom Using Large Photon Numbers. Phys. Rev. Appl. 2021, 15, 064030. [Google Scholar] [CrossRef]
- Zhang, H.; Chakram, S.; Roy, T.; Earnest, N.; Lu, Y.; Huang, Z.; Weiss, D.K.; Koch, J.; Schuster, D.I. Universal Fast-Flux Control of a Coherent, Low-Frequency Qubit. Phys. Rev. X 2021, 11, 011010. [Google Scholar] [CrossRef]
- Bao, F.; Deng, H.; Ding, D.; Gao, R.; Gao, X.; Huang, C.; Jiang, X.; Ku, H.S.; Li, Z.; Ma, X.; et al. Fluxonium: An Alternative Qubit Platform for High-Fidelity Operations. Phys. Rev. Lett. 2022, 129, 010502. [Google Scholar] [CrossRef]
- Somoroff, A.; Truitt, P.; Weis, A.; Bernhardt, J.; Yohannes, D.; Walter, J.; Kalashnikov, K.; Renzullo, M.; Mencia, R.A.; Vavilov, M.G.; et al. Fluxonium Qubits in a Flip-Chip Package. Phys. Rev. Appl. 2024, 21, 024015. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, C.; Weiss, D.K.; Huang, Z.; Ma, Y.; Guinn, C.; Sussman, S.; Chitta, S.P.; Chen, D.; Houck, A.A.; et al. Tunable Inductive Coupler for High-Fidelity Gates Between Fluxonium Qubits. PRX Quantum 2024, 5, 020326. [Google Scholar] [CrossRef]
- Schoelkopf, R.J.; Girvin, S.M. Wiring Up Quantum Systems. Nature 2008, 451, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.; Wilhelm, F.K. Superconducting Quantum Bits. Nature 2008, 453, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Girvin, S.M. Circuit QED: Superconducting Qubits Coupled to Microwave Photons. Quantum Mach. Meas. Control Eng. Quantum Syst. 2014, 96, 113–256. [Google Scholar] [CrossRef]
- Gu, X.; Kockum, A.F.; Miranowicz, A.; Liu, Y.X.; Nori, F. Microwave Photonics with Superconducting Quantum Circuits. Phys. Rep. 2017, 718–719, 1–102. [Google Scholar] [CrossRef]
- Devoret, M.H.; Wallraff, A.; Martinis, J.M. Superconducting Qubits: A Short Review. arXiv 2004, arXiv:cond-mat/0411174. [Google Scholar] [CrossRef]
- You, J.Q.; Nori, F. Superconducting Circuits and Quantum Information. Phys. Today 2005, 58, 42–47. [Google Scholar] [CrossRef]
- You, J.Q.; Nori, F. Atomic Physics and Quantum Optics Using Superconducting Circuits. Nature 2011, 474, 589–597. [Google Scholar] [CrossRef]
- Smith, W.C.; Kou, A.; Vool, U.; Pop, I.M.; Frunzio, L.; Schoelkopf, R.J.; Devoret, M.H. Quantization of Inductively Shunted Superconducting Circuits. Phys. Rev. B 2016, 94, 144507. [Google Scholar] [CrossRef]
- Petrescu, A.; Türeci, H.E.; Ustinov, A.V.; Pop, I.M. Fluxon-Based Quantum Simulation in Circuit QED. Phys. Rev. B 2018, 98, 174505. [Google Scholar] [CrossRef]
- Bader, D.A.; Burkhardt, P. A Simple and Efficient Algorithm for Finding Minimum Spanning Tree Replacement Edges. J. Graph Algorithms Appl. 2022, 26, 577–588. [Google Scholar] [CrossRef]
- García Ripoll, J.J. Quantum Information and Quantum Optics with Superconducting Circuits; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Vool, U.; Devoret, M. Introduction to Quantum Electromagnetic Circuits. Int. J. Circ. Theor. Appl. 2017, 45, 897–934. [Google Scholar] [CrossRef]
- Rasmussen, S.E.; Christensen, K.S.; Pedersen, S.P.; Kristensen, L.B.; Bækkegaard, T.; Loft, N.J.S.; Zinner, N.T. Superconducting Circuit Companion—An Introduction with Worked Examples. PRX Quantum 2021, 2, 040204. [Google Scholar] [CrossRef]
- Unnikrishnan, C.S. Quantum Non-Demolition Measurements: Concepts, Theory and Practice. Curr. Sci. 2015, 109, 2052–2059. Available online: https://www.jstor.org/stable/24906702 (accessed on 14 March 2023). [CrossRef]
- Pan, J.-W.; Yin, J.; Zhang, W.; Chen, Y.-A. The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet. IEEE Commun. Surv. Tutor. 2024, 26, 1898–1949. [Google Scholar] [CrossRef]
- Demmel, J. Applied Numerical Linear Algebra; SIAM: Philadelphia, PA, USA, 1997; Available online: https://www.stat.uchicago.edu/~lekheng/courses/302/demmel/ (accessed on 14 March 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pioraş-Ţimbolmaş, L.-M.; Máthé, L.; Zârbo, L.P. Circuit-QED for Multi-Loop Fluxonium-Type Qubits. Photonics 2025, 12, 417. https://doi.org/10.3390/photonics12050417
Pioraş-Ţimbolmaş L-M, Máthé L, Zârbo LP. Circuit-QED for Multi-Loop Fluxonium-Type Qubits. Photonics. 2025; 12(5):417. https://doi.org/10.3390/photonics12050417
Chicago/Turabian StylePioraş-Ţimbolmaş, Larisa-Milena, Levente Máthé, and Liviu P. Zârbo. 2025. "Circuit-QED for Multi-Loop Fluxonium-Type Qubits" Photonics 12, no. 5: 417. https://doi.org/10.3390/photonics12050417
APA StylePioraş-Ţimbolmaş, L.-M., Máthé, L., & Zârbo, L. P. (2025). Circuit-QED for Multi-Loop Fluxonium-Type Qubits. Photonics, 12(5), 417. https://doi.org/10.3390/photonics12050417