Vibration Deformation Measurement and Defect Identification Based on Time-Averaged Digital Holography
Abstract
:1. Introduction
2. Theoretical Basis of Vibration Deformation Measurement
2.1. Principle of Time-Averaged Digital Holography
2.2. Phase Retrieval
3. Analysis of Impacts of Configuration Parameters
3.1. Simulation of Stimulated Vibration of Objects
3.2. Hologram Recording
4. Experimental Demonstration and Discussion
4.1. Optimized System Design
4.2. Defect Recognition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, M.; Pensia, L.; Kumar, R. Highly stable vibration measurements by common-path off-axis digital holography. Opt. Lasers Eng. 2023, 163, 107452. [Google Scholar] [CrossRef]
- Kumar, M.; Matoba, O. 2D full-field displacement and vibration measurements of specularly reflecting surfaces by two-beam common-path digital holography. Opt. Lett. 2021, 46, 5966–5969. [Google Scholar] [CrossRef] [PubMed]
- De Greef, D.; Soons, J.; Dirckx, J.J.J. Digital stroboscopic holography setup for deformation measurement at both quasi-static and acoustic frequencies. Int. J. Optomechatronics 2014, 8, 275–291. [Google Scholar] [CrossRef]
- Kakue, T.; Endo, Y.; Nishitsuji, T.; Shimobaba, T.; Masuda, N.; Ito, T. Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomena. Sci. Rep. 2017, 7, 10413. [Google Scholar] [CrossRef]
- Khaleghi, M.; Guignard, J.; Furlong, C.; Rosowski, J.J. Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography. J. Biomed. Opt. 2015, 20, 111202. [Google Scholar] [CrossRef]
- Rajput, S.K.; Matoba, O.; Kumar, M.; Quan, X.; Awatsuji, Y. Sound wave detection by common-path digital holography. Opt. Lasers Eng. 2021, 137, 106331. [Google Scholar] [CrossRef]
- Powell, R.L.; Stetson, K.A. Interferometric vibration analysis by wavefront reconstruction. J. Opt. Soc. Am. 1965, 55, 1593–1598. [Google Scholar] [CrossRef]
- Picart, P.; Leval, J.; Mounier, D.; Gougeon, S. Time-averaged digital holography. Opt. Lett. 2003, 28, 1900–1902. [Google Scholar] [CrossRef]
- Singh, V.R.; Miao, J.; Wang, Z.; Hegde, G.; Asundi, A. Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography. Opt. Commun. 2007, 280, 285–290. [Google Scholar] [CrossRef]
- Bruno, F.; Laurent, J.; Prada, C.; Lamboul, B.; Passilly, B.; Atlan, M. Non-destructive testing of composite plates by holographic vibrometry. J. Appl. Phys. 2014, 115, 154503. [Google Scholar] [CrossRef]
- Psota, P.; Ledl, V.; Dolecek, R.; Erhart, J.; Kopecky, V. Measurement of piezoelectric transformer vibrations by digital holography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1962–1968. [Google Scholar] [CrossRef] [PubMed]
- Psota, P.; Lédl, V.; Matoušek, O.; Doleček, R.; Kredba, J. Pixel-wise Amplitude Distribution Evaluation in Time Average Digital Holography. J. Phys. Conf. Ser. 2018, 1149, 012033. [Google Scholar] [CrossRef]
- Psota, P.; Mokrý, P.; Lédl, V.; Stašík, M.; Matoušek, O.; Kredba, J. Absolute and pixel-wise measurements of vibration amplitudes using time-averaged digital holography. Opt. Lasers Eng. 2019, 121, 236–245. [Google Scholar] [CrossRef]
- Fu, M.; Dornseiff, J.; Barth, V.; Scheer, E. Time-averaged interference fringe analysis: A quantitative study of nanomembrane vibration dynamics. Sens. Actuators A Phys. 2025, 383, 116172. [Google Scholar] [CrossRef]
- Pavillon, N.; Arfire, C.; Bergoënd, I.; Depeursinge, C. Iterative method for zero-order suppression in off-axis digital holography. Opt. Express 2010, 18, 15318–15331. [Google Scholar] [CrossRef]
- Colomb, T.; Kühn, J.; Charrière, F.; Depeursinge, C.; Marquet, P.; Aspert, N. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Opt. Express 2006, 14, 4300–4306. [Google Scholar] [CrossRef]
- Weng, J.; Li, H.; Zhang, Z.; Zhong, J. Design of adaptive spatial filter at uniform standard for automatic analysis of digital holographic microscopy. Optik 2014, 125, 2633–2637. [Google Scholar] [CrossRef]
- He, X.; Nguyen, C.V.; Pratap, M.; Zheng, Y.; Wang, Y.; Nisbet, D.R.; Williams, R.J.; Rug, M.; Maier, A.G.; Lee, W.M. Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy. Biomed. Opt. Express 2016, 7, 3111–3123. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Gao, J.; Liu, Y.; Huang, J. Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy. Opt. Eng. 2015, 54, 031103. [Google Scholar] [CrossRef]
- Dang, C.; Li, J.; Zhao, P.; Xu, T. Adaptivly locating holographic positive first-order spectrum using maximum value of spectral phase. Opt. Precis. Eng. 2022, 30, 1272–1281. [Google Scholar] [CrossRef]
- Yan, K.; Yu, Y.; Sun, T.; Asundi, A.; Kemao, Q. Wrapped phase denoising using convolutional neural networks. Opt. Lasers Eng. 2020, 128, 105999. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, S.; Xia, Z.; Sun, Z.; Yang, L. DSPI image denoising method based on sine-cosine decomposition and BM3D filtering. Autom. Instrum. 2021, 6, 1–6. [Google Scholar]
- Xiao, Q.; Fan, M.; Zuo, X. Speckle phase map denoising based on empirical wavelet transform and cross correlation. Opt. Eng. 2021, 60, 064102. [Google Scholar] [CrossRef]
- Niu, R.; Tian, A.L.; Wang, D.S.; Liu, B.C.; Wang, H.J.; Qian, X.T.; Liu, W.G. Speckle Noise Suppression of Digital Holography Measuring System. Laser Optoelectron. Prog. 2022, 59, 1609002. [Google Scholar]
- Chen, J.; Liao, H.; Kong, Y.; Zhang, D.; Zhuang, S. Speckle denoising based on Swin-UNet in digital holographic interferometry. Opt. Express 2024, 32, 33465–33482. [Google Scholar] [CrossRef]
- Thomas, B.P.; Annamala Pillai, S.; Narayanamurthy, C.S. Investigation on vibration excitation of debonded sandwich structures using time-average digital holography. Appl. Opt. 2017, 56, F7–F13. [Google Scholar] [CrossRef]
- Mancio, L.; Olivares-Perez, A. Complete description of effects on reconstruction of dynamic objects from time-averaged digital holography to high-speed digital holography. Opt. Contin. 2024, 3, 893–901. [Google Scholar] [CrossRef]
- Asundi, A.; Singh, V.R. Time-averaged in-line digital holographic interferometry for vibration analysis. Appl. Opt. 2006, 45, 2391–2395. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Z.; Wang, Y.; Sun, Q.; Chen, H. Single-frame reconstruction for improvement of off-axis digital holographic imaging based on image interpolation. Opt. Lett. 2020, 45, 6623–6626. [Google Scholar] [CrossRef]
- Ning, X.; Li, W.; Wu, S.; Dong, M.; Zhu, L. Fast phase denoising using stationary wavelet transform in speckle pattern interferometry. Meas. Sci. Technol. 2019, 31, 025205. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, J.; Zeng, Z. A denoising scheme for DSPI phase based on improved variational mode decomposition. Mech. Syst. Signal Process. 2018, 110, 28–41. [Google Scholar] [CrossRef]
- Ding, J.; Zhou, W.; Yu, Y.J. Vibration Modes Study of Defective Eardrum Realized Using Digital Holographic Endoscopy. Chin. J. Lasers 2023, 50, 1507204. [Google Scholar]
- Mevissen, F.; Meo, M. Ultrasonically stimulated thermography for crack detection of turbine blades. Infrared Phys. Technol. 2022, 122, 104061. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, D.; Li, H.; Song, C.; Zhou, X.; Shen, S.; Zhang, G.; Yang, Y.; Wang, H. Detection of Internal Holes in Additive Manufactured Ti-6Al-4V Part Using Laser Ultrasonic Testing. Appl. Sci. 2020, 10, 365. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.; Wang, C.; Li, D.; Xu, W.; Zhang, X. Vibration Deformation Measurement and Defect Identification Based on Time-Averaged Digital Holography. Photonics 2025, 12, 373. https://doi.org/10.3390/photonics12040373
Hu D, Wang C, Li D, Xu W, Zhang X. Vibration Deformation Measurement and Defect Identification Based on Time-Averaged Digital Holography. Photonics. 2025; 12(4):373. https://doi.org/10.3390/photonics12040373
Chicago/Turabian StyleHu, Dongyang, Chen Wang, Di Li, Weiyu Xu, and Xiangchao Zhang. 2025. "Vibration Deformation Measurement and Defect Identification Based on Time-Averaged Digital Holography" Photonics 12, no. 4: 373. https://doi.org/10.3390/photonics12040373
APA StyleHu, D., Wang, C., Li, D., Xu, W., & Zhang, X. (2025). Vibration Deformation Measurement and Defect Identification Based on Time-Averaged Digital Holography. Photonics, 12(4), 373. https://doi.org/10.3390/photonics12040373