Phase Disturbance Compensation for Quantitative Imaging in Off-Axis Digital Holographic Microscopy
Abstract
:1. Introduction
2. Off-Axis Digital Holographic Microscopy
3. Algorithm to Compensation Phase in Off-Axis DHM
- Pre-Correction Stage:Adaptive mask-based spatial frequency filtering;+1 order peak localization via maximum intensity detection;Frequency shifting to zero-frequency alignment.
- Background Correction Stage:Phase disturbance modeling as background variation;Iterative minimum filtering for background extraction;Background subtraction for final correction.
4. Results and Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Kuschmierz, R.; Katz, O.; Koukourakis, N.; Czarske, J.W. Lensless Fiber Endomicroscopy in Biomedicine. PhotoniX 2024, 5, 18. [Google Scholar] [CrossRef]
- Potter, C.J.; Xiong, Z.; McLeod, E. Clinical and Biomedical Applications of Lensless Holographic Microscopy. Laser Photon. Rev. 2024, 18, 2400197. [Google Scholar] [CrossRef]
- Wu, Y.; Ozcan, A. Lensless Digital Holographic Microscopy and Its Applications in Biomedicine and Environmental Monitoring. Methods 2018, 136, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Zhou, Z.; Deng, G.; Du, P.; Jian, C.; Yu, Z. Experiment of Structural Geometric Morphology Monitoring for Bridges Using Holographic Visual Sensor. Sensors 2020, 20, 1187. [Google Scholar] [CrossRef]
- Quan, C.; Chen, W.; Tay, C.J. Shape Measurement by Multi-Illumination Method in Digital Holographic Interferometry. Opt. Commun. 2008, 281, 3957–3964. [Google Scholar] [CrossRef]
- Gyímesi, F.; Füzessy, Z.; Borbély, V.; Ráczkevi, B. Analogue Difference Holographic Interferometry for Two-Wavelength Contouring. Opt. Commun. 2009, 282, 276–283. [Google Scholar] [CrossRef]
- de Oliveira, I.; Miyazawa, K. Self-Stabilized Holographic Interferometry for the Measurement of Two-Dimensional Vibrations. Opt. Commun. 2023, 546, 129764. [Google Scholar] [CrossRef]
- Shi, H.; Fu, Y.; Quan, C.; Tay, C.J.; He, X. Vibration Measurement of a Micro-Structure by Digital Holographic Microscopy. Meas. Sci. Technol. 2009, 20, 065301. [Google Scholar] [CrossRef]
- Matsuda, K.; Ye, B.Q.; Fukuchi, N.; Okamoto, H.; Hara, T. Holographic Vibration Measurements of Rough Surfaces Using a LCSLM. Opt. Commun. 2007, 275, 53–56. [Google Scholar] [CrossRef]
- Huang, H.; Huang, H.; Zheng, Z.; Gao, L. Insights into infrared crystal phase characteristics based on deep learning holography with attention residual network. J. Mater. Chem. A 2025, 13, 6009–6019. [Google Scholar] [CrossRef]
- Seo, K.B.; Kim, B.M.; Kim, E.S. Digital Holographic Microscopy Based on a Modified Lateral Shearing Interferometer for Three-Dimensional Visual Inspection of Nanoscale Defects on Transparent Objects. Nanoscale Res. Lett. 2014, 9, 471. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zuo, P.; Tian, L.; Li, H.; Zhong, K.; Huang, Y.; Ma, B.; Yan, Z. Quantitative Detection of Internal Defects in Objects Using Holographic Double Exposure. Opt. Laser Technol. 2024, 168, 109985. [Google Scholar] [CrossRef]
- Trivedi, V.; Joglekar, M.; Mahajan, S.; Patel, N.; Chhaniwal, V.; Javidi, B.; Anand, A. Digital Holographic Imaging of Refractive Index Distributions for Defect Detection. Opt. Laser Technol. 2019, 111, 439–446. [Google Scholar] [CrossRef]
- Qin, W.; Yang, X.; Li, Y.; Peng, X.; Yao, H.; Qu, X.; Gao, B.Z. Two-Step Phase-Shifting Fluorescence Incoherent Holographic Microscopy. J. Biomed. Opt. 2014, 19, 060503. [Google Scholar] [CrossRef]
- Qiu, P.; Wang, H.; Jin, H.; Li, Y.; Shi, Y. Study on the Simplified Phase-Shifting Digital Holographic Microscopy. Optik 2010, 121, 1251–1256. [Google Scholar] [CrossRef]
- Picazo-Bueno, J.Á.; Ketelhut, S.; Schnekenburger, J.; Micó, V.; Kemper, B. Off-Axis Digital Lensless Holographic Microscopy Based on Spatially Multiplexed Interferometry. J. Biomed. Opt. 2024, 29, S22715. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhao, H.; Cao, L.; Shan, M.; Liu, B.; Lu, W.; Xie, H. Automatic Cross Filtering for Off-Axis Digital Holographic Microscopy. Results Phys. 2020, 16, 102910. [Google Scholar] [CrossRef]
- Wang, H.; Yu, M.; Jiang, Y.; Zhu, Q.; Liu, F. Point Spread Function and Lateral Resolution Analysis of Digital Holographic Microscopy System. Opt. Commun. 2014, 322, 90–96. [Google Scholar] [CrossRef]
- Mann, C.J.; Yu, L.; Lo, C.-M.; Kim, M.K. High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express 2005, 13, 8693–8698. [Google Scholar] [CrossRef]
- Doblas, A.; Sánchez-Ortiga, E.; Martínez-Corral, M.; Saavedra, G.; Andrés, P.; Garcia-Sucerquia, J. Shift-variant digital holographic microscopy: Inaccuracies in quantitative phase imaging. Opt. Lett. 2013, 38, 1352–1354. [Google Scholar] [CrossRef]
- Sánchez-Ortiga, E.; Doblas, A.; Saavedra, G.; Martínez-Corral, M.; Garcia-Sucerquia, J. Off-Axis Digital Holographic Microscopy: Practical Design Parameters for Operating at Diffraction Limit. Appl. Opt. 2014, 53, 2058–2066. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Nguyen, C.V.; Pratap, M.; Zheng, Y.; Wang, Y.; Nisbet, D.R.; Williams, R.J.; Rug, M.; Maier, A.G.; Lee, W.M. Automated Fourier Space Region-Recognition Filtering for off-Axis Digital Holographic Microscopy. Biomed. Opt. Express 2016, 7, 3111–3123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qu, W.; Wen, Y.; Yang, F.; Asundi, A. A New Phase Error Compensation Method in Digital Holographic Microscopy. In Proceedings of the International Conference on Experimental Mechanics, Singapore, 15–17 November 2014; pp. 542–549. [Google Scholar]
- Di, J.; Zhao, J.; Sun, W.; Jiang, H.; Yan, X. Phase Aberration Compensation of Digital Holographic Microscopy Based on Least Squares Surface Fitting. Opt. Commun. 2009, 282, 3873–3877. [Google Scholar] [CrossRef]
- Trujillo, C.; Castañeda, R.; Piedrahita-Quintero, P.; Garcia-Sucerquia, J. Automatic Full Compensation of Quantitative Phase Imaging in Off-Axis Digital Holographic Microscopy. Appl. Opt. 2016, 55, 10299–10306. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, R.; Doblas, A. Fast-Iterative automatic reconstruction method for quantitative phase image with reduced phase perturbations in off-axis digital holographic microscopy. Appl. Opt. 2021, 60, 10214–10220. [Google Scholar] [CrossRef]
- Obando-Vásquez, S.; Trujjillo, C. Computationally Efficient Phase Aberration Compensation Method for Digital Holographic Microscopy of Biological Samples; Optica Publishing Group: Washington, DC, USA, 2021. [Google Scholar]
FRS | ERS | CFS | MRS | |
---|---|---|---|---|
Image size | 512 × 512 | |||
Compensation angles | (0.04377, 0.06417) | (0.02362, 0.04638) | (0.02655, 0.04138) | (0.04377, 0.06417) |
Compensation rate | 1 | 0.65 | 0.63 | 1 |
phase compensation error | 0 | 0.343 | 0.368 | 0 |
Processing(s) | 28.4732 | 1.9421 | 3.7476 | 6.3729 |
Image size | 512 × 512 | |||
Compensation angles | (0.04673, 0.04197) | (0.04673, 0.04197) | (0.02177, 0.03771) | (0.04673, 0.04197) |
Compensation rate | 1 | 1 | 0.67 | 1 |
phase compensation error | 0 | 0 | 0.403 | 0 |
Processing(s) | 28.1492 | 1.7738 | 3.2183 | 6.2411 |
Image size | 512 × 512 | |||
Compensation angles | (0.02477, 0.01176) | (0.01955, 0.009739) | (0.02477, 0.01176) | (0.02477, 0.01176) |
Compensation rate | 1 | 0.82 | 1 | 1 |
phase compensation error | 0 | 0.204 | 0 | 0 |
Processing(s) | 29.1785 | 1.8661 | 3.3776 | 6.7331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Shao, W.; Hou, L.; Xue, C. Phase Disturbance Compensation for Quantitative Imaging in Off-Axis Digital Holographic Microscopy. Photonics 2025, 12, 345. https://doi.org/10.3390/photonics12040345
Li Y, Shao W, Hou L, Xue C. Phase Disturbance Compensation for Quantitative Imaging in Off-Axis Digital Holographic Microscopy. Photonics. 2025; 12(4):345. https://doi.org/10.3390/photonics12040345
Chicago/Turabian StyleLi, Ying, Wenlong Shao, Lijie Hou, and Changxi Xue. 2025. "Phase Disturbance Compensation for Quantitative Imaging in Off-Axis Digital Holographic Microscopy" Photonics 12, no. 4: 345. https://doi.org/10.3390/photonics12040345
APA StyleLi, Y., Shao, W., Hou, L., & Xue, C. (2025). Phase Disturbance Compensation for Quantitative Imaging in Off-Axis Digital Holographic Microscopy. Photonics, 12(4), 345. https://doi.org/10.3390/photonics12040345