Featureless Broadband Chaos Through Cascaded Optically Injected Semiconductor Lasers
Abstract
:1. Introduction
2. Experimental Setup and Demonstration
3. Numerical Model
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos; Springer: Berlin/Heidelberg, Germany, 2012; Volume 111. [Google Scholar]
- Sciamanna, M.; Shore, K.A. Physics and applications of laser diode chaos. Nat. Photonics 2015, 9, 151–162. [Google Scholar] [CrossRef]
- Ye, J.; Gao, X.; Li, X.; Yang, H.; An, Y.; Xu, P.; Wang, A.; Dong, X.; Wang, Y.; Qin, Y.; et al. Physical layer security-enhanced optical communication based on chaos masking and chaotic hardware encryption. Opt. Express 2024, 32, 27734–27747. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Zheng, L.; Wang, X.; Zhu, B.; Zhang, Z.; Hong, Y. High-speed secure stream cipher using synchronized chaos and the RC4 algorithm for optical communications. Opt. Express 2025, 33, 488–500. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Funabashi, R.; Kanno, K.; Uchida, A.; Wei, C.-C.; Hwang, S.-K. Entropy analysis on chaos excited through destabilization of semiconductor lasers at period-one nonlinear dynamics for physical random number generation. Opt. Express 2024, 32, 23097–23114. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.Y.; Liu, J.M. Chaotic lidar. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 991–997. [Google Scholar] [CrossRef]
- Xiong, W.; Bai, Q.; Hu, Y.; Zhang, X.; Wu, Y.; Xia, G.; Zhou, H.; Wu, J.; Wu, Z. 3D parallel pulsed chaos LiDAR system. Opt. Express 2024, 32, 11763–11773. [Google Scholar] [CrossRef]
- Yang, B.; Sun, J.; Chi, H.; Xu, K.; Yang, S. Joint radar and communication system based on a chaotic optoelectronic oscillator. Opt. Commun. 2024, 554, 130123. [Google Scholar] [CrossRef]
- Lin, F.Y.; Liu, J.M. Chaotic radar using nonlinear laser dynamics. IEEE J. Quantum Electron. 2004, 40, 815–820. [Google Scholar] [CrossRef]
- Dong, X.; Wang, A.; Zhang, J.; Han, H.; Zhao, T.; Liu, X.; Wang, Y. Combined attenuation and high-resolution fault measurements using chaos-OTDR. IEEE Photon. J. 2015, 7, 6804006. [Google Scholar]
- Li, X.-Z.; Yang, B.; Zhao, S.; Gu, Y.; Zhao, M. On prediction of chaotic dynamics in semiconductor lasers by reservoir computing. Opt. Express 2023, 31, 40592–40603. [Google Scholar] [CrossRef]
- Brückerhoff-Plückelmann, F.; Borras, H.; Klein, B.; Varri, A.; Becker, M.; Dijkstra, J.; Brückerhoff, M.; Wright, C.D.; Salinga, M.; Bhaskaran, H. Probabilistic photonic computing with chaotic light. Nat. Commun. 2024, 15, 10445. [Google Scholar] [CrossRef] [PubMed]
- Hemery, E.; Chusseau, L.; Lourtioz, J.M. Dynamic behaviors of semiconductor lasers under strong sinusoidal current modulation: Modeling and experiments at 1.3 um. IEEE J. Quantum Electron. 1990, 26, 633–641. [Google Scholar] [CrossRef]
- Liu, H.F.; Ngai, W.F. Nonlinear dynamics of a directly modulated 1.55um InGaAsP distributed feedback semiconductor laser. IEEE J. Quantum Electron. 1993, 29, 1668–1675. [Google Scholar] [CrossRef]
- Vicente, R.; Daudén, J.; Colet, P.; Toral, R. Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop. IEEE J. Quantum Electron. 2005, 41, 541–548. [Google Scholar] [CrossRef]
- Tang, S.; Liu, J.M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback. IEEE J. Quantum Electron. 2001, 37, 329–336. [Google Scholar] [CrossRef]
- Simpson, T.B.; Liu, J.M.; Huang, K.F.; Tai, K. Nonlinear dynamics induced by external optical injection in semiconductor lasers. J. Opt. B Quantum Semiclassical Opt. 1997, 9, 765. [Google Scholar] [CrossRef]
- Uchida, A.; Heil, T.; Liu, Y.; Davis, P.; Aida, T. High-Frequency Broad-Band Signal Generation Using a Semiconductor Laser with a Chaotic Optical Injection. IEEE J. Quantum Electron. 2003, 39, 1462–1467. [Google Scholar] [CrossRef]
- Lin, F.Y.; Liu, J.M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback. Opt. Commun. 2003, 221, 173–180. [Google Scholar] [CrossRef]
- Tang, S.; Vicente, R.; Chiang, M.C.; Mirasso, C.R.; Liu, J.M. Nonlinear dynamics of semiconductor lasers with mutual optoelectronic coupling. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 936–943. [Google Scholar] [CrossRef]
- Al-Hosiny, N.M.; Henning, I.D.; Adams, M.J. Tailoring enhanced chaos in optically injected semiconductor lasers. Opt. Commun. 2007, 269, 166–173. [Google Scholar] [CrossRef]
- Someya, H.; Oowada, I.; Okumura, H.; Kida, T.; Uchida, A. Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection. Opt. Express 2009, 17, 19536–19543. [Google Scholar] [PubMed]
- AlMulla, M. Period-doubling route to chaos in perturbed period-one nonlinear dynamics. Results Phys. 2025, 70, 108164. [Google Scholar] [CrossRef]
- Sakuraba, R.; Iwakawa, K.; Kanno, K.; Uchida, A. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express 2015, 23, 1470–1490. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, Z.; Gao, Z.; Xiao, J.; Wang, L.; Wang, Y.; Huang, Y.; Wang, A. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback. Opt. Express 2020, 28, 18507–18515. [Google Scholar] [CrossRef]
- Rontani, D.; Locquet, A.; Sciamanna, M.; Citrin, D.S.; Ortin, S. Time-Delay Identification in a Chaotic Semiconductor Laser with Optical Feedback: A Dynamical Point of View. IEEE J. Quantum Electron. 2009, 45, 879–1891. [Google Scholar] [CrossRef]
- Zunino, L.; Rosso, O.A.; Soriano, M.C. Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1250–1257. [Google Scholar] [CrossRef]
- Takiguchi, Y.; Ohyagi, K.; Ohtsubo, J. Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback. Opt. Lett. 2003, 28, 319–321. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, W.; Yang, Q.; Zeng, D.; Deng, L.; Chen, Q.; Cheng, M. Time delay estimation from the time series for optical chaos systems using deep learning. Opt. Express 2021, 29, 7904–7915. [Google Scholar] [CrossRef]
- Wang, A.-B.; Wang, Y.-C.; Wang, J.-F. Route to broadband chaos in a chaotic laser diode subject to optical injection. Opt. Lett. 2009, 34, 1144–1146. [Google Scholar] [CrossRef]
- Li, N.; Pan, W.; Locquet, A.; Citrin, D.S. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection. Opt. Lett. 2015, 40, 4416–4419. [Google Scholar] [CrossRef]
- Chan, S.-C.; Tang, W.K.S. Chaotic Dynamics of Laser Diodes with Strongly Modulated Optical Injection. Int. J. Bifurc. Chaos 2009, 19, 3417–3424. [Google Scholar] [CrossRef]
- Hong, Y.; Spencer, P.S.; Shore, K.A. Flat Broadband Chaos in Vertical-Cavity Surface-Emitting Lasers Subject to Chaotic Optical Injection. IEEE J. Quantum Electron. 2012, 48, 1536–1541. [Google Scholar] [CrossRef]
- Rontani, D.; Locquet, A.; Sciamanna, M.; Citrin, D.S. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt. Lett. 2007, 32, 2960–2962. [Google Scholar] [CrossRef] [PubMed]
- Kanno, K.; Uchida, A.; Bunsen, M. Complexity and bandwidth enhancement in unidirectionally coupled semiconductor lasers with time-delayed optical feedback. Phys. Rev. E 2016, 93, 032206. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, T.; Li, P.; Wang, A.; Zhang, J.; Wang, Y. Generation of Broadband Chaotic Laser Using Dual-Wavelength Optically Injected Fabry–Pérot Laser Diode with Optical Feedback. IEEE Photonics Technol. Lett. 2011, 23, 1872–1874. [Google Scholar] [CrossRef]
- AlMulla, M.; Qi, X.Q.; Liu, J.M. Dynamics Maps and Scenario Transitions for a Semiconductor Laser Subject to Dual-Beam Optical Injection. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1501108. [Google Scholar] [CrossRef]
- Hirano, K.; Yamazaki, T.; Morikatsu, S.; Okumura, H.; Aida, H.; Uchida, A.; Yoshimori, S.; Yoshimura, K.; Harayama, T.; Davis, P. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 2010, 18, 5512–5524. [Google Scholar] [CrossRef]
- Chen, J.; Duan, Y.; Li, L.; Zhong, Z. Wideband Polarization-Resolved Chaos with Time-Delay Signature Suppression in VCSELs Subject to Dual Chaotic Optical Injections. IEEE Access 2018, 6, 66807–66815. [Google Scholar] [CrossRef]
- Xiang, S.Y.; Pan, W.; Li, N.Q.; Luo, B.; Yan, L.S.; Zou, X.H.; Zhang, L.; Mu, P. Randomness-Enhanced Chaotic Source with Dual-Path Injection From a Single Master Laser. IEEE Photonics Technol. Lett. 2012, 24, 1753–1756. [Google Scholar] [CrossRef]
- Li, N.; Pan, W.; Xiang, S.; Yan, L.; Luo, B.; Zou, X. Loss of Time Delay Signature in Broadband Cascade-Coupled Semiconductor Lasers. IEEE Photonics Technol. Lett. 2012, 24, 2187–2190. [Google Scholar] [CrossRef]
- Li, S.-S.; Chan, S.-C. Chaotic Time-delay Signature Suppression in a Semiconductor Laser with Frequency-detuned Grating Feedback. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 541–552. [Google Scholar] [CrossRef]
- Rontani, D.; Mercier, E.; Wolfersberger, D.; Sciamanna, M. Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback. Opt. Lett. 2016, 41, 4637–4640. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y. Experimental study of time-delay signature of chaos in mutually coupled vertical-cavity surface-emitting lasers subject to polarization optical injection. Opt. Express 2013, 21, 17894–17903. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xiang, S.; Wang, Y.; Ma, Y.; Wang, B.; Wen, A.; Hao, Y. Generation of multi-channel chaotic signals with time delay signature concealment and ultrafast photonic decision making based on a globally-coupled semiconductor laser network. Photon. Res. 2020, 8, 1792–1799. [Google Scholar] [CrossRef]
- Guo, X.X.; Xiang, S.Y.; Zhang, Y.H.; Wen, A.J.; Hao, Y. Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays. IEEE J. Quantum Electron. 2018, 54, 2000308. [Google Scholar]
- Xiang, S.; Pan, W.; Zhang, L.; Wen, A.; Shang, L.; Zhang, H.; Lin, L. Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser. Opt. Commun. 2014, 324, 38–46. [Google Scholar] [CrossRef]
- Zhao, A.; Jiang, N.; Liu, S.; Xue, C.; Tang, J.; Qiu, K. Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback. Opt. Express 2019, 27, 12336–12348. [Google Scholar] [CrossRef]
- Han, H.; Cheng, X.M.; Jia, Z.W.; Shore, K.A. Suppression of Cavity Time-Delay Signature Using Noise-Phase-Modulated Feedback. IEEE Access 2020, 8, 35344–35349. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Chen, Y.-C.; Lin, F.-Y. Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning. Opt. Express 2015, 23, 2308–2319. [Google Scholar] [CrossRef]
- Wang, A.; Yang, Y.; Wang, B.; Zhang, B.; Li, L.; Wang, Y. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference. Opt. Express 2013, 21, 8701–8710. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; Yang, Y.; Zhang, M.; Xu, H.; Wang, B. Generation of flat-spectrum wideband chaos by fiber ring resonator. Appl. Phys. Lett. 2013, 102, 031112. [Google Scholar] [CrossRef]
- Qu, Y.; Xiang, S.; Wang, Y.; Lin, L.; Wen, A.J.; Hao, Y. Concealment of time delay signature of chaotic semiconductor nanolasers with double chaotic optical injections. IEEE J. Quantum Electron. 2019, 55, 2000407. [Google Scholar]
- Elsonbaty, A.; Hegazy, S.F.; Obayya, S.S.A. Simultaneous concealment of time delay signature in chaotic nanolaser with hybrid feedback. Opt. Lasers Eng. 2018, 107, 342–351. [Google Scholar] [CrossRef]
- Hong, Y.; Quirce, A.; Wang, B.; Ji, S.; Panajotov, K.; Spencer, P.S. Concealment of Chaos Time-Delay Signature in Three-Cascaded Vertical-Cavity Surface-Emitting Lasers. IEEE J. Quantum Electron. 2016, 52, 2400508. [Google Scholar] [CrossRef]
- Chang, D.; Zhong, Z.; Tang, J.; Spencer, P.S.; Hong, Y. Flat broadband chaos generation in a discrete-mode laser subject to optical feedback. Opt. Express 2020, 28, 39076–39083. [Google Scholar]
- Zeng, Y.; Zhou, P.; Huang, Y.; Mu, P.; Li, N. Wideband and high-dimensional chaos generation using optically pumped spin-VCSELs. Opt. Express 2023, 31, 948–963. [Google Scholar]
- Zhang, X.; Guo, G.; Liu, X.; Hu, G.; Wang, K.; Mu, P. Dynamics and Concealment of Time-Delay Signature in Mutually Coupled Nano-Laser Chaotic Systems. Photonics 2023, 10, 1196. [Google Scholar] [CrossRef]
- Ruan, J.; Chan, S.C. Simultaneous Coherent Detection with Baseband Enhancement in Chaotic Random Bit Generation by an Optically Injected Laser. IEEE J. Quantum Electron. 2023, 59, 1400108. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Okuma, T.; Kanno, K.; Uchida, A. Entropy rate of chaos in an optically injected semiconductor laser for physical random number generation. Opt. Express 2021, 29, 2442–2457. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Chan, S. Correlated Random Bit Generation Using Chaotic Semiconductor Lasers Under Unidirectional Optical Injection. IEEE Photon. J. 2017, 9, 1505411. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Funabashi, R.; Kanno, K.; Uchida, A.; Wei, C.-C.; Hwang, S.-K. High-entropy chaos generation using semiconductor lasers subject to intensity-modulated optical injection for certified physical random number generation. Opt. Lett. 2021, 46, 3384–3387. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-H.; Hwang, S.-K. Broadband chaotic microwave generation through destabilization of period-one nonlinear dynamics in semiconductor lasers for radar applications. Opt. Lett. 2020, 45, 3777–3780. [Google Scholar] [CrossRef] [PubMed]
- Doumbia, Y.; Malica, T.; Wolfersberger, D.; Sciamanna, M. Wideband chaos induced by the optical injection of a frequency comb. Opt. Lett. 2023, 48, 1442–1445. [Google Scholar] [PubMed]
- Nguimdo, R.M.; Soriano, M.C.; Colet, P. Role of the phase in the identification of delay time in semiconductor lasers with optical feedback. Opt. Lett. 2011, 36, 4332–4334. [Google Scholar]
- Li, N.; Pan, W.; Xiang, S.; Yan, L.; Luo, B.; Zou, X.; Zhang, L.; Mu, P. Photonic generation of wideband time-delay-signature-eliminated chaotic signals utilizing an optically injected semiconductor laser. IEEE J. Quantum Electron. 2012, 48, 1339–1345. [Google Scholar]
- AlMulla, M.; Liu, J.M. Linewidth characteristics of period-one dynamics induced by optically injected semiconductor lasers. Opt. Express 2020, 28, 14677–14693. [Google Scholar] [CrossRef]
- Hwang, S.K.; Liu, J.M.; White, J.K. 35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3-um Semiconductor Lasers Subject to Strong Injection Locking. IEEE Photonics Technol. Lett. 2004, 16, 972–974. [Google Scholar]
- Lin, F.Y.; Chao, Y.K.; Wu, T.-C. Effective Bandwidths of Broadband Chaotic Signals. IEEE J. Quantum Electron. 2012, 48, 1010–1014. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar]
- AlMulla, M. Optimizing optically injected semiconductor lasers for periodic dynamics with reduced sensitivity to perturbations. Opt. Express 2019, 27, 17283–17297. [Google Scholar] [CrossRef]
- AlMulla, M.; Liu, J.M. Effects of the Gain Saturation Factor on the Nonlinear Dynamics of Optically Injected Semiconductor Lasers. IEEE J. Quantum Electron. 2014, 50, 158–165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlMulla, M. Featureless Broadband Chaos Through Cascaded Optically Injected Semiconductor Lasers. Photonics 2025, 12, 325. https://doi.org/10.3390/photonics12040325
AlMulla M. Featureless Broadband Chaos Through Cascaded Optically Injected Semiconductor Lasers. Photonics. 2025; 12(4):325. https://doi.org/10.3390/photonics12040325
Chicago/Turabian StyleAlMulla, Mohammad. 2025. "Featureless Broadband Chaos Through Cascaded Optically Injected Semiconductor Lasers" Photonics 12, no. 4: 325. https://doi.org/10.3390/photonics12040325
APA StyleAlMulla, M. (2025). Featureless Broadband Chaos Through Cascaded Optically Injected Semiconductor Lasers. Photonics, 12(4), 325. https://doi.org/10.3390/photonics12040325