Joint Three-Task Optical Performance Monitoring with High Performance and Superior Generalizability Using a Meta-Learning-Based Convolutional Neural Network-Attention Algorithm and Amplitude-Differential Phase Histograms Across WDM Transmission Scenarios
Abstract
:1. Introduction
2. Simulation Setup
3. Model Framework and Operating Mechanism
3.1. MAML-CNN-ATT Algorithm
3.1.1. MAML Algorithm
Algorithm 1 MAML Algorithm |
Require: : distribution over tasks Require: ,: step size hyperparameters 1: randomly initialize 2: while not done do 3: Sample N tasks 4: Divide the data of each task into a support set and a query set in a ratio of 5: for all do 6: Calculate on the support set 7: Update adapted parameters with one gradient descent step: 8: Calculate on the query set 9: end for 10: Update 11: end while |
3.1.2. CNN-ATT Algorithm
3.2. The Workflow of the MAML-CNN-ATT Algorithm
4. Results and Discussion
4.1. The OPM Performance of MAML-CNN-ATT in the Single-Channel Transmission Scenario
4.1.1. NLNP Estimation
4.1.2. OSNR Monitoring
4.1.3. MFI
4.1.4. Comparison of the OPM Performance and Complexity Among the MAML-CNN-ATT, MAML-CNN and MAML-CNN-LSTM Algorithms
4.2. Comparison of the MAML-CNN-ATT and the TL-CNN-ATT on the OPM Performance in the Five-Channel WDM Transmission Scenario
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hauske, F.N.; Kuschnerov, M.; Spinnler, B.; Lankl, B. Optical performance monitoring in digital coherent receivers. J. Light. Technol. 2009, 27, 3623–3631. [Google Scholar] [CrossRef]
- Dong, Z.; Khan, F.N.; Sui, Q.; Zhong, K.; Lu, C.; Lau, A.P.T. Optical performance monitoring: A review of current and future technologies. J. Light. Technol. 2015, 34, 525–543. [Google Scholar] [CrossRef]
- Zhuge, Q.; Zeng, X.; Lun, H.; Cai, M.; Liu, X.; Yi, L.; Hu, W. Application of machine learning in fiber nonlinearity modeling and monitoring for elastic optical networks. J. Light. Technol. 2019, 37, 3055–3063. [Google Scholar] [CrossRef]
- Lun, H.; Fu, M.; Liu, X.; Wu, Y.; Yi, L.; Hu, W.; Zhuge, Q. Soft failure identification for long-haul optical communication systems based on one-dimensional convolutional neural network. J. Light. Technol. 2020, 38, 2992–2999. [Google Scholar]
- Cho, H.J.; Varughese, S.; Lippiatt, D.; Desalvo, R.; Tibuleac, S.; Ralph, S.E. Optical performance monitoring using digital coherent receivers and convolutional neural networks. Opt. Express 2020, 28, 32087–32104. [Google Scholar]
- Zhang, Y.; Zhou, P.; Liu, Y.; Wang, J.; Li, C.; Lu, Y. Fast adaptation of multi-task meta-learning for optical performance monitoring. Opt. Express 2023, 31, 23183–23197. [Google Scholar]
- Cheng, Y.; Yang, Z.; Yan, Z.; Liu, D.; Fu, S.; Qin, Y. Meta-learning-enabled accurate OSNR monitoring of directly detected QAM signals with one-shot training. Opt. Lett. 2022, 47, 2218–2221. [Google Scholar]
- Khan, F.N.; Zhong, K.; Zhou, X.; Al-Arashi, W.H.; Yu, C.; Lu, C.; Lau, A.P.T. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks. Opt. Express 2017, 25, 17767–17776. [Google Scholar]
- Xiang, Q.; Yang, Y.; Zhang, Q.; Yao, Y. Joint, accurate and robust optical signal-to-noise ratio and modulation format monitoring scheme using a single Stokes-parameter-based artificial neural network. Opt. Express 2021, 29, 7276–7287. [Google Scholar]
- Yu, Z.; Wan, Z.; Shu, L.; Hu, S.; Zhao, Y.; Zhang, J.; Xu, K. Loss weight adaptive multi-task learning based optical performance monitor for multiple parameters estimation. Opt. Express 2019, 27, 37041–37055. [Google Scholar]
- Feng, J.; Jiang, L.; Yan, L.; Yi, A.; Pan, W.; Luo, B. Intelligent optical performance monitoring based on intensity and differential-phase features for digital coherent receivers. J. Light. Technol. 2022, 40, 3592–3601. [Google Scholar]
- Wang, D.; Wang, M.; Zhang, M.; Zhang, Z.; Yang, H.; Li, J.; Li, J.; Chen, X. Cost-effective and data size–adaptive OPM at intermediated node using convolutional neural network-based image processor. Opt. Express 2019, 27, 9403–9419. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Li, J.; Li, Z.; Li, J.; Song, C.; Chen, X. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. Opt. Express 2017, 25, 17150–17166. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, A.; Guo, P.; He, P. OSNR and nonlinear noise power estimation for optical fiber communication systems using LSTM based deep learning technique. Opt. Express 2018, 26, 21346–21357. [Google Scholar] [CrossRef]
- Yang, S.; Yang, L.; Luo, F.; Li, B.; Wang, X.; Du, Y.; Liu, D. Joint fiber nonlinear noise estimation, OSNR estimation and modulation format identification based on asynchronous complex histograms and deep learning for digital coherent receivers. Sensors 2021, 21, 380. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Zhang, T.; Jiang, G.; Yang, L.; Luo, F.; Hu, Y. Joint OSNR and Nonlinear Noise Power Estimation Based on Deep Learning for Coherent Optical Communication Systems. IEEE Photon. J. 2023, 15, 1–8. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, Q. Flexible clustered multi-task learning by learning representative tasks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 266–278. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, T.; Jin, T.; Jiang, W.; Hu, S.; Huang, X.; Xu, B.; Yu, Z.; Yi, X.; Qiu, K. Meta-learning assisted source domain optimization for transfer learning based optical fiber nonlinear equalization. J. Light. Technol. 2022, 41, 1269–1277. [Google Scholar] [CrossRef]
- Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1126–1135. [Google Scholar]
- Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-learning in neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5149–5169. [Google Scholar] [CrossRef] [PubMed]
- Huisman, M.; Van Rijn, J.N.; Plaat, A. A survey of deep meta-learning. Artif. Intell. Rev. 2021, 54, 4483–4541. [Google Scholar] [CrossRef]
- Vettoruzzo, A.; Bouguelia, M.-R.; Vanschoren, J.; Rögnvaldsson, T.; Santosh, K. Advances and challenges in meta-learning: A technical review. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 4763–4779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, X.; Du, J.; Tian, P. Fast self-learning modulation recognition method for smart underwater optical communication systems. Opt. Express 2020, 28, 38223–38240. [Google Scholar] [CrossRef]
- Waswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the IEEE Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Wu, J.; Droppo, J.; Deng, L.; Acero, A. A noise-robust ASR front-end using Wiener filter constructed from MMSE estimation of clean speech and noise. In Proceedings of the 2003 IEEE Workshop on Automatic Speech Recognition and Understanding, St Thomas, VI, USA, 30 November–4 December 2003; pp. 321–326. [Google Scholar]
- Agrawal, G. Nonlinear Fiber Optics, 5th ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Caballero, F.V.; Ives, D.J.; Laperle, C.; Charlton, D.; Zhuge, Q.; O’Sullivan, M.; Savory, S.J. Machine learning based linear and nonlinear noise estimation. J. Opt. Commun. Netw. 2018, 10, D42–D51. [Google Scholar] [CrossRef]
Modulation format and OSNR range | QPSK: 10~25 dB | 32QAM: 20~35 dB |
16QAM: 15~30 dB | 64QAM: 20~35 dB | |
Launch power | −1~+4 (~1) dBm | |
Transmission distance | 400~800 (~200) km | |
Symbol rate | 28 Gbaud | |
Dispersion parameter | 16.75 ps/nm/km | |
Nonlinear coefficient | 2.6 × 10−20 m2/W |
Algorithms | Testing Time Consumption (One Episode) | Total Parameters | NLNP Estimation Error | OSNR Monitoring Error | MFI Accuracy |
---|---|---|---|---|---|
MAML-CNN | 0.08 s | 116,070 | QPSK: 0.29 dB | QPSK: 0.17 dB | 100% |
16QAM: 0.33 dB | 16QAM: 0.25 dB | ||||
32QAM: 0.39 dB | 32QAM: 0.43 dB | ||||
64QAM: 0.51 dB | 64QAM: 0.64 dB | ||||
MAML-CNN-LSTM | 0.15 s | 149,350 | QPSK: 0.27 dB | QPSK: 0.15 dB | 100% |
16QAM: 0.29 dB | 16QAM: 0.22 dB | ||||
32QAM: 0.36 dB | 32QAM: 0.39 dB | ||||
64QAM: 0.49 dB | 64QAM: 0.61 dB | ||||
MAML-CNN-ATT | 0.11 s | 132,710 | QPSK: 0.26 dB | QPSK: 0.14 dB | 100% |
16QAM: 0.29 dB | 16QAM: 0.21 dB | ||||
32QAM: 0.33 dB | 32QAM: 0.35 dB | ||||
64QAM: 0.42 dB | 64QAM: 0.53 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Shi, J.; Cao, Y.; Xue, Y.L. Joint Three-Task Optical Performance Monitoring with High Performance and Superior Generalizability Using a Meta-Learning-Based Convolutional Neural Network-Attention Algorithm and Amplitude-Differential Phase Histograms Across WDM Transmission Scenarios. Photonics 2025, 12, 324. https://doi.org/10.3390/photonics12040324
Zhang D, Shi J, Cao Y, Xue YL. Joint Three-Task Optical Performance Monitoring with High Performance and Superior Generalizability Using a Meta-Learning-Based Convolutional Neural Network-Attention Algorithm and Amplitude-Differential Phase Histograms Across WDM Transmission Scenarios. Photonics. 2025; 12(4):324. https://doi.org/10.3390/photonics12040324
Chicago/Turabian StyleZhang, Di, Junyao Shi, Yameng Cao, and Yan Ling Xue. 2025. "Joint Three-Task Optical Performance Monitoring with High Performance and Superior Generalizability Using a Meta-Learning-Based Convolutional Neural Network-Attention Algorithm and Amplitude-Differential Phase Histograms Across WDM Transmission Scenarios" Photonics 12, no. 4: 324. https://doi.org/10.3390/photonics12040324
APA StyleZhang, D., Shi, J., Cao, Y., & Xue, Y. L. (2025). Joint Three-Task Optical Performance Monitoring with High Performance and Superior Generalizability Using a Meta-Learning-Based Convolutional Neural Network-Attention Algorithm and Amplitude-Differential Phase Histograms Across WDM Transmission Scenarios. Photonics, 12(4), 324. https://doi.org/10.3390/photonics12040324