Featureless Broadband Chaos Through Cascaded Optically Injected Semiconductor Lasers
Abstract
1. Introduction
2. Experimental Setup and Demonstration
3. Numerical Model
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos; Springer: Berlin/Heidelberg, Germany, 2012; Volume 111. [Google Scholar]
- Sciamanna, M.; Shore, K.A. Physics and applications of laser diode chaos. Nat. Photonics 2015, 9, 151–162. [Google Scholar] [CrossRef]
- Ye, J.; Gao, X.; Li, X.; Yang, H.; An, Y.; Xu, P.; Wang, A.; Dong, X.; Wang, Y.; Qin, Y.; et al. Physical layer security-enhanced optical communication based on chaos masking and chaotic hardware encryption. Opt. Express 2024, 32, 27734–27747. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Zheng, L.; Wang, X.; Zhu, B.; Zhang, Z.; Hong, Y. High-speed secure stream cipher using synchronized chaos and the RC4 algorithm for optical communications. Opt. Express 2025, 33, 488–500. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Funabashi, R.; Kanno, K.; Uchida, A.; Wei, C.-C.; Hwang, S.-K. Entropy analysis on chaos excited through destabilization of semiconductor lasers at period-one nonlinear dynamics for physical random number generation. Opt. Express 2024, 32, 23097–23114. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.Y.; Liu, J.M. Chaotic lidar. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 991–997. [Google Scholar] [CrossRef]
- Xiong, W.; Bai, Q.; Hu, Y.; Zhang, X.; Wu, Y.; Xia, G.; Zhou, H.; Wu, J.; Wu, Z. 3D parallel pulsed chaos LiDAR system. Opt. Express 2024, 32, 11763–11773. [Google Scholar] [CrossRef]
- Yang, B.; Sun, J.; Chi, H.; Xu, K.; Yang, S. Joint radar and communication system based on a chaotic optoelectronic oscillator. Opt. Commun. 2024, 554, 130123. [Google Scholar] [CrossRef]
- Lin, F.Y.; Liu, J.M. Chaotic radar using nonlinear laser dynamics. IEEE J. Quantum Electron. 2004, 40, 815–820. [Google Scholar] [CrossRef]
- Dong, X.; Wang, A.; Zhang, J.; Han, H.; Zhao, T.; Liu, X.; Wang, Y. Combined attenuation and high-resolution fault measurements using chaos-OTDR. IEEE Photon. J. 2015, 7, 6804006. [Google Scholar]
- Li, X.-Z.; Yang, B.; Zhao, S.; Gu, Y.; Zhao, M. On prediction of chaotic dynamics in semiconductor lasers by reservoir computing. Opt. Express 2023, 31, 40592–40603. [Google Scholar] [CrossRef]
- Brückerhoff-Plückelmann, F.; Borras, H.; Klein, B.; Varri, A.; Becker, M.; Dijkstra, J.; Brückerhoff, M.; Wright, C.D.; Salinga, M.; Bhaskaran, H. Probabilistic photonic computing with chaotic light. Nat. Commun. 2024, 15, 10445. [Google Scholar] [CrossRef] [PubMed]
- Hemery, E.; Chusseau, L.; Lourtioz, J.M. Dynamic behaviors of semiconductor lasers under strong sinusoidal current modulation: Modeling and experiments at 1.3 um. IEEE J. Quantum Electron. 1990, 26, 633–641. [Google Scholar] [CrossRef]
- Liu, H.F.; Ngai, W.F. Nonlinear dynamics of a directly modulated 1.55um InGaAsP distributed feedback semiconductor laser. IEEE J. Quantum Electron. 1993, 29, 1668–1675. [Google Scholar] [CrossRef]
- Vicente, R.; Daudén, J.; Colet, P.; Toral, R. Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop. IEEE J. Quantum Electron. 2005, 41, 541–548. [Google Scholar] [CrossRef]
- Tang, S.; Liu, J.M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback. IEEE J. Quantum Electron. 2001, 37, 329–336. [Google Scholar] [CrossRef]
- Simpson, T.B.; Liu, J.M.; Huang, K.F.; Tai, K. Nonlinear dynamics induced by external optical injection in semiconductor lasers. J. Opt. B Quantum Semiclassical Opt. 1997, 9, 765. [Google Scholar] [CrossRef]
- Uchida, A.; Heil, T.; Liu, Y.; Davis, P.; Aida, T. High-Frequency Broad-Band Signal Generation Using a Semiconductor Laser with a Chaotic Optical Injection. IEEE J. Quantum Electron. 2003, 39, 1462–1467. [Google Scholar] [CrossRef]
- Lin, F.Y.; Liu, J.M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback. Opt. Commun. 2003, 221, 173–180. [Google Scholar] [CrossRef]
- Tang, S.; Vicente, R.; Chiang, M.C.; Mirasso, C.R.; Liu, J.M. Nonlinear dynamics of semiconductor lasers with mutual optoelectronic coupling. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 936–943. [Google Scholar] [CrossRef]
- Al-Hosiny, N.M.; Henning, I.D.; Adams, M.J. Tailoring enhanced chaos in optically injected semiconductor lasers. Opt. Commun. 2007, 269, 166–173. [Google Scholar] [CrossRef]
- Someya, H.; Oowada, I.; Okumura, H.; Kida, T.; Uchida, A. Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection. Opt. Express 2009, 17, 19536–19543. [Google Scholar] [PubMed]
- AlMulla, M. Period-doubling route to chaos in perturbed period-one nonlinear dynamics. Results Phys. 2025, 70, 108164. [Google Scholar] [CrossRef]
- Sakuraba, R.; Iwakawa, K.; Kanno, K.; Uchida, A. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express 2015, 23, 1470–1490. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, Z.; Gao, Z.; Xiao, J.; Wang, L.; Wang, Y.; Huang, Y.; Wang, A. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback. Opt. Express 2020, 28, 18507–18515. [Google Scholar] [CrossRef]
- Rontani, D.; Locquet, A.; Sciamanna, M.; Citrin, D.S.; Ortin, S. Time-Delay Identification in a Chaotic Semiconductor Laser with Optical Feedback: A Dynamical Point of View. IEEE J. Quantum Electron. 2009, 45, 879–1891. [Google Scholar] [CrossRef]
- Zunino, L.; Rosso, O.A.; Soriano, M.C. Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1250–1257. [Google Scholar] [CrossRef]
- Takiguchi, Y.; Ohyagi, K.; Ohtsubo, J. Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback. Opt. Lett. 2003, 28, 319–321. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, W.; Yang, Q.; Zeng, D.; Deng, L.; Chen, Q.; Cheng, M. Time delay estimation from the time series for optical chaos systems using deep learning. Opt. Express 2021, 29, 7904–7915. [Google Scholar] [CrossRef]
- Wang, A.-B.; Wang, Y.-C.; Wang, J.-F. Route to broadband chaos in a chaotic laser diode subject to optical injection. Opt. Lett. 2009, 34, 1144–1146. [Google Scholar] [CrossRef]
- Li, N.; Pan, W.; Locquet, A.; Citrin, D.S. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection. Opt. Lett. 2015, 40, 4416–4419. [Google Scholar] [CrossRef]
- Chan, S.-C.; Tang, W.K.S. Chaotic Dynamics of Laser Diodes with Strongly Modulated Optical Injection. Int. J. Bifurc. Chaos 2009, 19, 3417–3424. [Google Scholar] [CrossRef]
- Hong, Y.; Spencer, P.S.; Shore, K.A. Flat Broadband Chaos in Vertical-Cavity Surface-Emitting Lasers Subject to Chaotic Optical Injection. IEEE J. Quantum Electron. 2012, 48, 1536–1541. [Google Scholar] [CrossRef]
- Rontani, D.; Locquet, A.; Sciamanna, M.; Citrin, D.S. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt. Lett. 2007, 32, 2960–2962. [Google Scholar] [CrossRef] [PubMed]
- Kanno, K.; Uchida, A.; Bunsen, M. Complexity and bandwidth enhancement in unidirectionally coupled semiconductor lasers with time-delayed optical feedback. Phys. Rev. E 2016, 93, 032206. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, T.; Li, P.; Wang, A.; Zhang, J.; Wang, Y. Generation of Broadband Chaotic Laser Using Dual-Wavelength Optically Injected Fabry–Pérot Laser Diode with Optical Feedback. IEEE Photonics Technol. Lett. 2011, 23, 1872–1874. [Google Scholar] [CrossRef]
- AlMulla, M.; Qi, X.Q.; Liu, J.M. Dynamics Maps and Scenario Transitions for a Semiconductor Laser Subject to Dual-Beam Optical Injection. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1501108. [Google Scholar] [CrossRef]
- Hirano, K.; Yamazaki, T.; Morikatsu, S.; Okumura, H.; Aida, H.; Uchida, A.; Yoshimori, S.; Yoshimura, K.; Harayama, T.; Davis, P. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 2010, 18, 5512–5524. [Google Scholar] [CrossRef]
- Chen, J.; Duan, Y.; Li, L.; Zhong, Z. Wideband Polarization-Resolved Chaos with Time-Delay Signature Suppression in VCSELs Subject to Dual Chaotic Optical Injections. IEEE Access 2018, 6, 66807–66815. [Google Scholar] [CrossRef]
- Xiang, S.Y.; Pan, W.; Li, N.Q.; Luo, B.; Yan, L.S.; Zou, X.H.; Zhang, L.; Mu, P. Randomness-Enhanced Chaotic Source with Dual-Path Injection From a Single Master Laser. IEEE Photonics Technol. Lett. 2012, 24, 1753–1756. [Google Scholar] [CrossRef]
- Li, N.; Pan, W.; Xiang, S.; Yan, L.; Luo, B.; Zou, X. Loss of Time Delay Signature in Broadband Cascade-Coupled Semiconductor Lasers. IEEE Photonics Technol. Lett. 2012, 24, 2187–2190. [Google Scholar] [CrossRef]
- Li, S.-S.; Chan, S.-C. Chaotic Time-delay Signature Suppression in a Semiconductor Laser with Frequency-detuned Grating Feedback. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 541–552. [Google Scholar] [CrossRef]
- Rontani, D.; Mercier, E.; Wolfersberger, D.; Sciamanna, M. Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback. Opt. Lett. 2016, 41, 4637–4640. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y. Experimental study of time-delay signature of chaos in mutually coupled vertical-cavity surface-emitting lasers subject to polarization optical injection. Opt. Express 2013, 21, 17894–17903. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xiang, S.; Wang, Y.; Ma, Y.; Wang, B.; Wen, A.; Hao, Y. Generation of multi-channel chaotic signals with time delay signature concealment and ultrafast photonic decision making based on a globally-coupled semiconductor laser network. Photon. Res. 2020, 8, 1792–1799. [Google Scholar] [CrossRef]
- Guo, X.X.; Xiang, S.Y.; Zhang, Y.H.; Wen, A.J.; Hao, Y. Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays. IEEE J. Quantum Electron. 2018, 54, 2000308. [Google Scholar]
- Xiang, S.; Pan, W.; Zhang, L.; Wen, A.; Shang, L.; Zhang, H.; Lin, L. Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser. Opt. Commun. 2014, 324, 38–46. [Google Scholar] [CrossRef]
- Zhao, A.; Jiang, N.; Liu, S.; Xue, C.; Tang, J.; Qiu, K. Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback. Opt. Express 2019, 27, 12336–12348. [Google Scholar] [CrossRef]
- Han, H.; Cheng, X.M.; Jia, Z.W.; Shore, K.A. Suppression of Cavity Time-Delay Signature Using Noise-Phase-Modulated Feedback. IEEE Access 2020, 8, 35344–35349. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Chen, Y.-C.; Lin, F.-Y. Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning. Opt. Express 2015, 23, 2308–2319. [Google Scholar] [CrossRef]
- Wang, A.; Yang, Y.; Wang, B.; Zhang, B.; Li, L.; Wang, Y. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference. Opt. Express 2013, 21, 8701–8710. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; Yang, Y.; Zhang, M.; Xu, H.; Wang, B. Generation of flat-spectrum wideband chaos by fiber ring resonator. Appl. Phys. Lett. 2013, 102, 031112. [Google Scholar] [CrossRef]
- Qu, Y.; Xiang, S.; Wang, Y.; Lin, L.; Wen, A.J.; Hao, Y. Concealment of time delay signature of chaotic semiconductor nanolasers with double chaotic optical injections. IEEE J. Quantum Electron. 2019, 55, 2000407. [Google Scholar]
- Elsonbaty, A.; Hegazy, S.F.; Obayya, S.S.A. Simultaneous concealment of time delay signature in chaotic nanolaser with hybrid feedback. Opt. Lasers Eng. 2018, 107, 342–351. [Google Scholar] [CrossRef]
- Hong, Y.; Quirce, A.; Wang, B.; Ji, S.; Panajotov, K.; Spencer, P.S. Concealment of Chaos Time-Delay Signature in Three-Cascaded Vertical-Cavity Surface-Emitting Lasers. IEEE J. Quantum Electron. 2016, 52, 2400508. [Google Scholar] [CrossRef]
- Chang, D.; Zhong, Z.; Tang, J.; Spencer, P.S.; Hong, Y. Flat broadband chaos generation in a discrete-mode laser subject to optical feedback. Opt. Express 2020, 28, 39076–39083. [Google Scholar]
- Zeng, Y.; Zhou, P.; Huang, Y.; Mu, P.; Li, N. Wideband and high-dimensional chaos generation using optically pumped spin-VCSELs. Opt. Express 2023, 31, 948–963. [Google Scholar]
- Zhang, X.; Guo, G.; Liu, X.; Hu, G.; Wang, K.; Mu, P. Dynamics and Concealment of Time-Delay Signature in Mutually Coupled Nano-Laser Chaotic Systems. Photonics 2023, 10, 1196. [Google Scholar] [CrossRef]
- Ruan, J.; Chan, S.C. Simultaneous Coherent Detection with Baseband Enhancement in Chaotic Random Bit Generation by an Optically Injected Laser. IEEE J. Quantum Electron. 2023, 59, 1400108. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Okuma, T.; Kanno, K.; Uchida, A. Entropy rate of chaos in an optically injected semiconductor laser for physical random number generation. Opt. Express 2021, 29, 2442–2457. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Chan, S. Correlated Random Bit Generation Using Chaotic Semiconductor Lasers Under Unidirectional Optical Injection. IEEE Photon. J. 2017, 9, 1505411. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Funabashi, R.; Kanno, K.; Uchida, A.; Wei, C.-C.; Hwang, S.-K. High-entropy chaos generation using semiconductor lasers subject to intensity-modulated optical injection for certified physical random number generation. Opt. Lett. 2021, 46, 3384–3387. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-H.; Hwang, S.-K. Broadband chaotic microwave generation through destabilization of period-one nonlinear dynamics in semiconductor lasers for radar applications. Opt. Lett. 2020, 45, 3777–3780. [Google Scholar] [CrossRef] [PubMed]
- Doumbia, Y.; Malica, T.; Wolfersberger, D.; Sciamanna, M. Wideband chaos induced by the optical injection of a frequency comb. Opt. Lett. 2023, 48, 1442–1445. [Google Scholar] [PubMed]
- Nguimdo, R.M.; Soriano, M.C.; Colet, P. Role of the phase in the identification of delay time in semiconductor lasers with optical feedback. Opt. Lett. 2011, 36, 4332–4334. [Google Scholar]
- Li, N.; Pan, W.; Xiang, S.; Yan, L.; Luo, B.; Zou, X.; Zhang, L.; Mu, P. Photonic generation of wideband time-delay-signature-eliminated chaotic signals utilizing an optically injected semiconductor laser. IEEE J. Quantum Electron. 2012, 48, 1339–1345. [Google Scholar]
- AlMulla, M.; Liu, J.M. Linewidth characteristics of period-one dynamics induced by optically injected semiconductor lasers. Opt. Express 2020, 28, 14677–14693. [Google Scholar] [CrossRef]
- Hwang, S.K.; Liu, J.M.; White, J.K. 35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3-um Semiconductor Lasers Subject to Strong Injection Locking. IEEE Photonics Technol. Lett. 2004, 16, 972–974. [Google Scholar]
- Lin, F.Y.; Chao, Y.K.; Wu, T.-C. Effective Bandwidths of Broadband Chaotic Signals. IEEE J. Quantum Electron. 2012, 48, 1010–1014. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar]
- AlMulla, M. Optimizing optically injected semiconductor lasers for periodic dynamics with reduced sensitivity to perturbations. Opt. Express 2019, 27, 17283–17297. [Google Scholar] [CrossRef]
- AlMulla, M.; Liu, J.M. Effects of the Gain Saturation Factor on the Nonlinear Dynamics of Optically Injected Semiconductor Lasers. IEEE J. Quantum Electron. 2014, 50, 158–165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlMulla, M. Featureless Broadband Chaos Through Cascaded Optically Injected Semiconductor Lasers. Photonics 2025, 12, 325. https://doi.org/10.3390/photonics12040325
AlMulla M. Featureless Broadband Chaos Through Cascaded Optically Injected Semiconductor Lasers. Photonics. 2025; 12(4):325. https://doi.org/10.3390/photonics12040325
Chicago/Turabian StyleAlMulla, Mohammad. 2025. "Featureless Broadband Chaos Through Cascaded Optically Injected Semiconductor Lasers" Photonics 12, no. 4: 325. https://doi.org/10.3390/photonics12040325
APA StyleAlMulla, M. (2025). Featureless Broadband Chaos Through Cascaded Optically Injected Semiconductor Lasers. Photonics, 12(4), 325. https://doi.org/10.3390/photonics12040325