To Stitch or Not to Stitch, That Is the Question: Multi-Gaze Eye Topography Stitching Versus Single-Shot Profilometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Data Collection
2.1.1. Medmont Meridia
2.1.2. ESP
2.1.3. Processing the Instruments’ Output
2.2. Geometric Transformation Estimation
2.3. Testing Geometric Transformation Estimation as a Reverse Engineering Approach
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECP | Eye care practitioner |
3D | Three-dimensional |
CGMP | Computer-generated Moiré profilometry |
ESP | Eye surface profiler |
FTP | Fourier transform profilometry |
HDR | High-dynamic-range |
ICP | Iterative closest point |
MMP | Modulation measuring profilometry |
MP | Moiré profilometry |
MSAC | M-estimator sample consensus |
NaN | Not a number |
NCI | Neighbouring cubic interpolation |
OD | Oculus dexter |
OS | Oculus sinister |
PDP | Phase-differencing profilometry |
PSP | Phase-shifting profilometry |
RMSE | Root mean square error |
SPU | Spatial phase unwrapping |
TPU | Temporal phase unwrapping |
XML | Extensible markup language |
References
- Lam, A.K.C. Rigid lens fitting made easier using amodified keratometer. Ophthal. Physiol. Opt. 1993, 13, 100–101. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Swartz, T.S. (Eds.) Corneal Topography: A Guide for Clinical Application in the Wavefront Era, 2nd ed.; SLACK Inc.: San Francisco, CA, USA, 2011. [Google Scholar]
- Read, S.A.; Collins, M.J.; Carney, L.G.; Franklin, R.J. The topography of the central and peripheral cornea. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1404–1415. [Google Scholar] [CrossRef] [PubMed]
- Montani, G. Association between soft contact lens decentration and scleral shape. Contact Lens Anterior Eye 2021, 44, 3. [Google Scholar] [CrossRef]
- Hall, L.A.; Young, G.; Wolffsohn, J.S.; Riley, C. The influence of corneoscleral topography on soft contact lens fit. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6801–6806. [Google Scholar] [CrossRef]
- Giovanzana, S.; Ţălu, Ş.; Nicoară, S.D. Sagittal height differences of disposable soft contact lenses. Int. Ophthalmol. 2020, 40, 459–465. [Google Scholar] [CrossRef]
- Su, X.; Chen, W. Fourier transform profilometry: A review. Opt. Lasers Eng. 2001, 35, 263–284. [Google Scholar] [CrossRef]
- He, Q.; Ning, J.; Liu, X.; Li, Q. Phase-shifting profilometry for 3D shape measurement of moving objects on production lines. Precis. Eng. 2025, 92, 30–38. [Google Scholar] [CrossRef]
- Ordones, S.; Servin, M.; Kang, J.S. Moire profilometry through simultaneous dual fringe projection for accurate phase demodulation: A comparative study. Appl. Opt. 2021, 60, 8667–8675. [Google Scholar] [CrossRef]
- Li, C.; Cao, Y.; Wang, L.; Wan, Y.; Fu, G.; Wang, Y.; Chen, C. High precision computer-generated moiré profilometry. Sci. Rep. 2019, 9, 7804. [Google Scholar] [CrossRef]
- Lu, M.; Su, X.; Cao, Y.; You, Z.; Zhong, M. Modulation measuring profilometry with cross grating projection and single shot for dynamic 3D shape measurement. Opt. Lasers Eng. 2016, 87, 103–110. [Google Scholar] [CrossRef]
- Wei, Z.; Cao, Y.; Wu, H.; Xu, C.; Ruan, G.; Wu, F.; Li, C. Dynamic phase-differencing profilometry with number-theoretical phase unwrapping and interleaved projection. Opt. Express 2024, 32, 19578–19593. [Google Scholar] [CrossRef] [PubMed]
- Iskander, D.R.; Wachel, P.; Simpson, P.N.; Consejo, A.; Jesus, D.A. Principles of operation, accuracy and precision of an Eye Surface Profiler. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2016, 36, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Consejo, A.; Iskander, D.R. Corneo-scleral limbus demarcation from 3D height data. Contact Lens Anterior Eye 2016, 39, 450–457. [Google Scholar] [CrossRef] [PubMed]
- DeNaeyer, G.; Sanders, D.R. sMap3D Corneo-Scleral Topographer Repeatability in Scleral Lens Patients. Eye Contact Lens 2018, 44 (Suppl. S1), S259–S264. [Google Scholar] [CrossRef]
- DeNaeyer, G.; Sanders, D.R.; Farajian, T.S. Surface coverage with single vs. multiple gaze surface topography to fit scleral lenses. Contact Lens Anterior Eye 2017, 40, 162–169. [Google Scholar] [CrossRef]
- Franklin, R.J.; Morelande, M.R.; Iskander, D.R.; Collins, M.J.; Davis, B.A. Combining Central and Peripheral Videokeratoscope Maps to Investigate Total Corneal Topography. Eye Contact Lens Sci. Clin. Pract. 2006, 32, 27–32. [Google Scholar] [CrossRef]
- Belin, M.W.; Ratliff, C.D. Evaluating data acquisition and smoothing functions of currently available videokeratoscopes. J. Cataract Refract. Surg. 1996, 22, 421–426. [Google Scholar] [CrossRef]
- Abass, A.; Lopes, B.T.; Eliasy, A.; Salomao, M.; Wu, R.; White, L.; Jones, S.; Clamp, J.; Ambrósio, R., Jr.; Elsheikh, A. Artefact-free topography based scleral-asymmetry. PLoS ONE 2019, 14, e0219789. [Google Scholar] [CrossRef]
- Tang, W.; Collins, M.J.; Carney, L.; Davis, B. The accuracy and precision performance of four videokeratoscopes in measuring test surfaces. Optom. Vis. Sci. 2000, 77, 483–491. [Google Scholar] [CrossRef]
- Glynn, R.J.; Rosner, B. Accounting for the correlation between fellow eyes in regression analysis. Arch. Ophthalmol. 1992, 110, 381–387. [Google Scholar] [CrossRef]
- Fathy, A.; Lopes, B.T.; Ambrósio, R.; Wu, R.; Abass, A. The Efficiency of Using Mirror Imaged Topography in Fellow Eyes Analyses of Pentacam HR Data. Symmetry 2021, 13, 2132. [Google Scholar] [CrossRef]
- Wu, L.-Y.; Lin, W.-P.; Wu, R.; White, L.; Abass, A. FEA-Based Stress–Strain Barometers as Forecasters for Corneal Refractive Power Change in Orthokeratology. Bioengineering 2024, 11, 166. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, R.; Wang, Y.; Tao, W. Evaluation of the ICP Algorithm in 3D Point Cloud Registration. IEEE Access 2020, 8, 68030–68048. [Google Scholar] [CrossRef]
- Zhou, Q.; Shen, Z.; Huang, G.; Zhi, P.; Zhao, R. Chapter 3—Localisation for unmanned vehicle. In Theories and Practices of Self-Driving Vehicles; Zhou, Q., Shen, Z., Yong, B., Zhao, R., Zhi, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 63–93. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Torr, P.H.S.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. [Google Scholar] [CrossRef]
- Everitt, B.S.; Skrondal, A. The Cambridge Dictionary of Statistics, 4th ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Wang, J.; Elsheikh, A.; Davey, P.G.; Wang, W.; Bao, F.; Mottershead, J.E. Corneal topography matching by iterative registration. Proc. Inst. Mech. Eng. H 2014, 228, 1154–1167. [Google Scholar] [CrossRef]
- Baraya, M.; Moore, J.; Lopes, B.T.; Wu, R.; Bao, F.; Zheng, X.; Consejo, A.; Abass, A. Limitations of Reconstructing Pentacam Rabbit Corneal Tomography by Zernike Polynomials. Bioengineering 2023, 10, 39. [Google Scholar] [CrossRef]
- Wei, Y.; Lopes, B.T.; Eliasy, A.; Wu, R.; Fathy, A.; Elsheikh, A.; Abass, A. Performance of Zernike polynomials in reconstructing raw-elevation data captured by Pentacam HR, Medmont E300 and Eye Surface Profiler. Heliyon 2021, 7, e08623. [Google Scholar] [CrossRef]
- Takeda, M.; Mutoh, K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 1983, 22, 3977–3982. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, P. High-resolution, real-time three-dimensional shape measurement. Opt. Eng. 2006, 45, 123601. [Google Scholar]
- Li, C.; Cao, Y.; Wang, L.; Wan, Y.; Li, H.; Xu, C.; Zhang, H. Computer-generated moiré profilometry based on fringe-superposition. Sci. Rep. 2020, 10, 17202. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z. 3D Reconstruction with Single-Shot Structured Light RGB Line Pattern. Sensors 2021, 21, 4819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cao, Y.; Li, C.; Wang, L.; Li, H.; Xu, C.; Wan, Y. Color-encoded single-shot computer-generated Moiré profilometry. Sci. Rep. 2021, 11, 11020. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, Y.; Wu, Y. Comparison and combination of three spatial phase unwrapping algorithms. Opt. Rev. 2019, 26, 380–390. [Google Scholar] [CrossRef]
- Zuo, C.; Huang, L.; Zhang, M.; Chen, Q.; Asundi, A. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. Opt. Lasers Eng. 2016, 85, 84–103. [Google Scholar] [CrossRef]
- Saldner, H.O.; Huntley, J.M. Temporal phase unwrapping: Application to surface profiling of discontinuous objects. Appl. Opt. 1997, 36, 2770–2775. [Google Scholar] [CrossRef]
- Ghiglia, D.C.; Pritt, M.D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Zuo, C.; Feng, S.; Huang, L.; Tao, T.; Yin, W.; Chen, Q. Phase shifting algorithms for fringe projection profilometry: A review. Opt. Lasers Eng. 2018, 109, 23–59. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Liang, X.; Huang, H.; Qian, X.; Feng, F.; Zhang, C.; Wang, X.; Gui, W.; Li, X. Global phase accuracy enhancement of structured light system calibration and 3D reconstruction by overcoming inevitable unsatisfactory intensity modulation. Measurement 2024, 236, 114952. [Google Scholar] [CrossRef]
- Xu, C.; Cao, Y.; Wu, H.; Li, H.; Zhang, H.; An, H. Curtain-type phase unwrapping algorithm. Opt. Eng. 2022, 61, 044103. [Google Scholar]
- Zhang, Y.; Cao, Y.; Wu, H.; Li, C. Spatial phase unwrapping algorithm based on multi-anchors bidirectional location and suppression. Opt. Eng. 2024, 63, 014101. [Google Scholar]
- Zuo, C.; Chen, Q.; Gu, G.; Feng, S.; Feng, F.; Li, R.; Shen, G. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Opt. Lasers Eng. 2013, 51, 953–960. [Google Scholar] [CrossRef]
- Zhou, C.; Si, S.; Li, X. Dynamic 3D shape measurement based on the phase-shifting moire algorithm. In Proceedings of the Sixth Symposium on Novel Optoelectronic Detection Technology and Applications; SPIE: Washington, DC, USA, 2020; pp. 894–904. [Google Scholar]
- Liu, Q.; Li, L.; Huang, X.; Zhang, H.; Yue, X. Hierarchical phase unwrapping for dual-wavelength digital holographic microscopy. J. Opt. 2020, 22, 045701. [Google Scholar] [CrossRef]
- An, H.; Cao, Y.; Li, H.; Zhang, H. Temporal Phase Unwrapping Based on Unequal Phase-Shifting Code. IEEE Trans. Image Process. 2023, 32, 1432–1441. [Google Scholar] [CrossRef]
- Li, W.; Sun, H.; Li, F.; Wang, B.; Wang, H.; Gao, X. A complementary binary code based phase unwrapping method. Optoelectron. Lett. 2024, 20, 228–233. [Google Scholar] [CrossRef]
- Wu, F.; Cao, Y.; An, H.; Wei, Z. Dynamic three-dimensional reconstruction with phase shift coding division multiplexing. Sens. Actuators A Phys. 2024, 379, 115847. [Google Scholar] [CrossRef]
- Xiao, Y.; Cao, Y.; Wu, Y. Improved algorithm for phase-to-height mapping in phase measuring profilometry. Appl. Opt. 2012, 51, 1149–1155. [Google Scholar] [CrossRef]
- Han, S.; Yang, Y.; Li, X.; Zhao, X.; Zhang, X. Improved phase-to-height mapping method combine with device attitude. Sci. Rep. 2024, 14, 9575. [Google Scholar] [CrossRef]
- Zhou, W.; Su, X. A direct mapping algorithm for phase-measuring profilometry. J. Mod. Opt. 1994, 41, 89–94. [Google Scholar]
- Zhang, S.; Huang, P. Phase Error Compensation for a 3D Shape Measurement System Based on the Phase-Shifting Method; SPIE: Washington, DC, USA, 2005; Volume 6000. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-P.; Wu, L.-Y.; Lin, W.-R.; White, L.; Wu, R.; Fathy, A.; Alanazi, R.; Davies, J.; Abass, A. To Stitch or Not to Stitch, That Is the Question: Multi-Gaze Eye Topography Stitching Versus Single-Shot Profilometry. Photonics 2025, 12, 318. https://doi.org/10.3390/photonics12040318
Lin W-P, Wu L-Y, Lin W-R, White L, Wu R, Fathy A, Alanazi R, Davies J, Abass A. To Stitch or Not to Stitch, That Is the Question: Multi-Gaze Eye Topography Stitching Versus Single-Shot Profilometry. Photonics. 2025; 12(4):318. https://doi.org/10.3390/photonics12040318
Chicago/Turabian StyleLin, Wen-Pin, Lo-Yu Wu, Wei-Ren Lin, Lynn White, Richard Wu, Arwa Fathy, Rami Alanazi, Jay Davies, and Ahmed Abass. 2025. "To Stitch or Not to Stitch, That Is the Question: Multi-Gaze Eye Topography Stitching Versus Single-Shot Profilometry" Photonics 12, no. 4: 318. https://doi.org/10.3390/photonics12040318
APA StyleLin, W.-P., Wu, L.-Y., Lin, W.-R., White, L., Wu, R., Fathy, A., Alanazi, R., Davies, J., & Abass, A. (2025). To Stitch or Not to Stitch, That Is the Question: Multi-Gaze Eye Topography Stitching Versus Single-Shot Profilometry. Photonics, 12(4), 318. https://doi.org/10.3390/photonics12040318