Mueller Matrix Associated with an Arbitrary 4×4 Real Matrix. The Effective Component of a Mueller Matrix
Abstract
:1. Introduction
2. Theoretical Framework
3. Mueller Matrix Associated with a 4×4 Real Non-Mueller Matrix
4. The Effective Component of a Mueller Matrix
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cloude, S.R. Group theory and polarisation algebra. Optik 1986, 75, 26–36. [Google Scholar]
- Kim, K.; Mandel, L.; Wolf, E. Relationship between Jones and Mueller matrices for random media. J. Opt. Soc. Am. A 1987, 4, 433–437. [Google Scholar] [CrossRef]
- Barakat, R. Conditions for the physical realizability of polarization matrices characterizing passive systems. J. Mod. Opt. 1987, 34, 1535–1544. [Google Scholar] [CrossRef]
- Arnal Gil, P.M. Modelo Matricial Para el Estudio de Fenómenos de Polarización de la Luz. Ph.D. Thesis, University of Zaragoza, Zaragoza, Spain, 1990. [Google Scholar]
- Brosseau, C.; Barakat, R. Jones and Mueller polarization matrices for random media. Opt. Commun. 1991, 84, 127–132. [Google Scholar] [CrossRef]
- Kostinski, A.B.; Givens, C.R. On the gain of a passive linear depolarizing system. J. Mod. Opt. 1992, 39, 1947–1952. [Google Scholar] [CrossRef]
- Opatrný, T.; Peřina, J. Non-image-forming polarization optical devices and Lorentz transformations—An analogy. Phys. Lett. A 1993, 181, 199–202. [Google Scholar] [CrossRef]
- Gil, J.J. Characteristic properties of Mueller matrices. J. Opt. Soc. Am. A 2000, 17, 328–334. [Google Scholar] [CrossRef]
- Savenkov, S.N.; Sydoruk, O.I.; Muttiah, R.S. Conditions for polarization elements to be dichroic and birefringent. J. Opt. Soc. Am. A 2005, 22, 1447–1452. [Google Scholar] [CrossRef]
- Savenkov, S.N.; Marienko, V.V.; Oberemok, E.A.; Sydoruk, O. Generalized matrix equivalence theorem for polarization theory. Phys. Rev. E 2006, 74, 056607. [Google Scholar] [CrossRef]
- Devlaminck, V.; Terrier, P. Non-singular Mueller matrices characterizing passive systems. Optik 2010, 121, 1994–1997. [Google Scholar] [CrossRef]
- Gil, J.J. Transmittance constraints in serial decompositions of Mueller matrices: The arrow form of a Mueller matrix. J. Opt. Soc. Am. A 2013, 30, 701–707. [Google Scholar] [CrossRef]
- San José, I.; Gil, J.J. Characterization of passivity in Mueller matrices. J. Opt. Soc. Am. A 2020, 37, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J.; Ossikovski, R. Polarized Light and the Mueller Matrix Approach, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Soleillet, P. Sur les paramètres caractérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence. Ann. Phys. 1929, 10, 23–59. [Google Scholar] [CrossRef]
- Arteaga, O.; Nichols, S. Soleillet’s formalism of coherence and partial polarization in 2D and 3D: Application to fluorescence polarimetry. J. Opt. Soc. Am. A 2018, 35, 1254–1260. [Google Scholar] [CrossRef]
- Perrin, F. Polarization of light scattering by isotropic opalescent media. J. Chem. Phys. 1942, 10, 415–427. [Google Scholar] [CrossRef]
- Parke, G. N III. Matrix Optics. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1948. [Google Scholar]
- Parke, G. N III. Optical algebra. J. Math. Phys. 1949, 28, 131–139. [Google Scholar] [CrossRef]
- Bolshakov, Y.C.V.M.; van der Mee, A.C.; Ran, M.; Reichstein, B.; Rodman, L. Polar decompositions in finite dimensional indefinite scalar product spaces: Special cases and applications. In Proceedings of the Recent Developments in Operator Theory and Its Applications: International Conference in Winnipeg, Winnipeg, MB, Canada, 2–6 October 1994; Gohberg, I., Lancaster, P., Shivakumar, P.N., Eds.; Birkhauser: Boston, MA, USA, 1996; Volume 87, pp. 61–94. [Google Scholar]
- Bolshakov, Y.; van der Mee, C.V.M.; Ran, A.C.M.; Reichstein, B.; Rodman, L. Errata for: Polar decompositions in finite dimensional indefinite scalar product spaces: Special cases and applications. Integral Equ. Oper. Theory 1997, 27, 497–501. [Google Scholar] [CrossRef]
- Rao, A.G.; Mallesh, K.S.; Sudha. On the algebraic characterization of a Mueller matrix in polarization optics. Identifying, I. a Mueller matrix from its N matrix. J. Mod. Opt. 1998, 45, 955–987. [Google Scholar] [CrossRef]
- Rao, A.G.; Mallesh, K.S.; Sudha. On the algebraic characterization of a Mueller matrix in polarization optics. II. Necessary and sufficient conditions for Jones-derived Mueller matrices. J. Mod. Opt. 1998, 45, 989–999. [Google Scholar]
- Ossikovski, R. Analysis of depolarizing Mueller matrices through a symmetric decomposition. J. Opt. Soc. Am. A 2009, 26, 1109–1118. [Google Scholar] [CrossRef]
- Ossikovski, R. Canonical forms of depolarizing Mueller matrices. J. Opt. Soc. Am. A 2010, 27, 123–130. [Google Scholar] [CrossRef]
- San José, I.; Gil, J.J.; Ossikovski, R. Algorithm for the numerical calculation of the serial components of the normal form of depolarizing Mueller matrices. Appl. Opt. 2020, 59, 2291–2297. [Google Scholar] [CrossRef]
- Marathay, A.S. Operator Formalism in the Theory of Partial Polarization. J. Opt. Soc. Am. 1965, 55, 969–980. [Google Scholar] [CrossRef]
- Collett, E. The Description of Polarization in Classical Physics. Am. J. Phys. 1968, 36, 713–725. [Google Scholar] [CrossRef]
- Schmieder, R.W. Stokes-Algebra Formalism. J. Opt. Soc. Am. 1969, 59, 297–302. [Google Scholar] [CrossRef]
- Whitney, C. Pauli-agebraic operators in polarization optics. J. Opt. Soc. Am. 1971, 61, 1207–1213. [Google Scholar] [CrossRef]
- Barakat, R. Bilinear constraints between elements of the 4×4 Mueller-Jones transfer matrix of polarization theory. Opt. Commun. 1981, 38, 159–161. [Google Scholar] [CrossRef]
- Fry, E.S.; Kattawar, G.W. Relationships between elements of the Stokes matrix. Appl. Opt. 1981, 20, 2811–2814. [Google Scholar] [CrossRef]
- Simon, R. The connection between Mueller and Jones matrices of polarization optics. Opt. Commun. 1982, 42, 293–297. [Google Scholar] [CrossRef]
- Gil, J.J. Determination of Polarization Parameters in Matricial Representation. Theoretical Contribution and Development of an Automatic Measurement Device. Ph.D. Thesis, University of Zaragoza, Zaragoza, Spain, 1983. [Google Scholar]
- Dlugnikov, L. Changes in polarization of a light beam with arbitrary autocoherence propagating in a birefringent crystal. Opt. Acta Int. J. Opt. 1984, 31, 803–811. [Google Scholar] [CrossRef]
- Gil, J.J.; Bernabéu, E. A depolarization criterion in Mueller matrices. Opt. Acta Int. J. Opt. 1985, 32, 259–261. [Google Scholar] [CrossRef]
- Cloude, S.R. Conditions for the physical realisability of matrix operators in polarimetry. In Proceedings of the Polarization Considerations for Optical Systems II, San Diego, CA, USA, 9–11 August 1989; pp. 177–185. [Google Scholar]
- Xing, Z.-F. On the deterministic and non-deterministic Mueller matrix. J. Mod. Opt. 1992, 39, 461–484. [Google Scholar] [CrossRef]
- van der Mee, C.V.M.; Hovenier, J.W. Structure of matrices transforming Stokes parameters. J. Math. Phys. 1992, 33, 3574–3584. [Google Scholar] [CrossRef]
- van der Mee, C.V.M. An eigenvalue criterion for matrices transforming Stokes parameters. J. Math. Phys. 1993, 34, 5072–5088. [Google Scholar] [CrossRef]
- Givens, C.R.; Kostinski, A.B. A simple necessary and sufficient condition on physically realizable Mueller matrices. J. Mod. Opt. 1993, 40, 471–481. [Google Scholar] [CrossRef]
- Kostinski, A.B.; Givens, C.R.; Kwiatkowski, J.M. Constraints on Mueller matrices of polarization optics. Appl. Opt. 1993, 32, 1646–1651. [Google Scholar] [CrossRef]
- Nagirner, D.I. Constraints on matrices transforming Stokes vectors. Astron. Astrophys. 1993, 275, 318–324. [Google Scholar]
- Sridhar, R.; Simon, R. Normal form for Mueller matrices in polarization optics. J. Mod. Opt. 1994, 41, 1903–1915. [Google Scholar] [CrossRef]
- Lu, S.Y.; Chipman, R.A. Homogeneous and inhomogeneous Jones matrices. J. Opt. Soc. Am. A 1994, 11, 766–773. [Google Scholar] [CrossRef]
- Anderson, D.G.M.; Barakat, R. Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix. J. Opt. Soc. Am. A 1994, 11, 2305–2319. [Google Scholar] [CrossRef]
- Lu, S.Y.; Chipman, R.A. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 1996, 13, 1106–1113. [Google Scholar] [CrossRef]
- Barakat, R. Exponential versions of the Jones and Mueller-Jones polarization matrices. J. Opt. Soc. Am. A 1996, 13, 158–163. [Google Scholar] [CrossRef]
- Le Roy-Brehonnet, F.; Le Jeune, B.; Gerligand, P.Y.; Cariou, J.; Lotrian, J. Analysis of depolarizing optical targets by Mueller matrix formalism. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 1997, 6, 385–404. [Google Scholar] [CrossRef]
- Le Roy-Brehonnet, F.; Le Jeune, B. Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties. Prog. Quantum Electron. 1997, 21, 109–151. [Google Scholar] [CrossRef]
- Chipman, R.A. Structure of the Mueller calculus. In Proceedings of the Polarization Analysis, Measurement, and Remote Sensing III, San Diego, CA, USA, 2–4 August 2000; Volume 4133, pp. 1–9. [Google Scholar]
- Sudha; Gopala Rao, A.V. Polarization elements: A group-theoretical study. J. Opt. Soc. Am. A 2001, 18, 3130–3134. [Google Scholar] [CrossRef]
- Tudor, T. Dirac-algebraic approach to the theory of device operators in polarization optics. J. Opt. Soc. Am. A 2003, 20, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J. Polarimetric characterization of light and media. Eur. Phys. J. Appl. Phys. 2007, 40, 1–47. [Google Scholar] [CrossRef]
- Tudor, T.; Gheondea, A. Pauli algebraic forms of normal and non-normal operators. J. Opt. Soc. Am. A 2007, 24, 204–210. [Google Scholar] [CrossRef]
- Savenkov, S.N.; Marfin, I.S. Invariance of anisotropy properties presentation in scope of polarization equivalence theorems. In Proceedings of the Saratov Fall Meeting 2006: Coherent Optics of Ordered and Random Media VII, Saratov, Russia, 26–30 September 2006. [Google Scholar]
- Sudha, A.; Gopala, V.; Rao, A.; Usha, R.; Devi, A.; Rajagopal, K. Positive-operator-valued-measure view of the ensemble approach to polarization optics. J. Opt. Soc. Am. A 2008, 25, 874–880. [Google Scholar] [CrossRef]
- Tudor, T. Interaction of light with the polarization devices: A vectorial Pauli algebraic approach. J. Phys. A Math. Theor. 2008, 41, 41530. [Google Scholar] [CrossRef]
- Savenkov, S.N. Jones and Mueller matrices: Structure, symmetry relations and information content. In Light Scattering Reviews 4; Kokhanovsky, A.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Simon, B.N.; Simon, S.; Gori, F.; Santarsiero, M.; Borghi, R.; Mukunda, N.; Simon, R. Nonquantum entanglement resolves a basic issue in Polarization Optics. Phys. Rev. Lett. 2010, 104, 023901. [Google Scholar] [CrossRef] [PubMed]
- Cloude, S.R. Depolarization synthesis: Understanding the optics of Mueller matrix depolarization. J. Opt. Soc. Am. A 2013, 30, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J. From a nondepolarizing Mueller matrix to a depolarizing Mueller matrix. J. Opt. Soc. Am. A 2014, 31, 2736–2743. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J.; Ossikovski, R.; San José, I. Singular Mueller matrices. J. Opt. Soc. Am. A 2016, 33, 600–609. [Google Scholar] [CrossRef]
- Kuntman, E.; Kuntman, M.A.; Arteaga, O. Vector and matrix states for Mueller matrices of nondepolarizing optical media. J. Opt. Soc. Am. A 2017, 34, 39–45. [Google Scholar] [CrossRef]
- Kuntman, E.; Kuntman, M.A.; Sancho-Parramon, J.; Arteaga, O. Formalism of optical coherence and polarization based on material media states. Phys Rev. A 2017, 95, 063819. [Google Scholar] [CrossRef]
- Chipman, R.A. Mueller matrices. In Polarized Light and Optical Systems; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Kuntman, E.M.; Kuntman, A.; Canillas, A.; Arteaga, O. Quaternion algebra for Stokes-Mueller formalism. J. Opt. Soc. Am. A 2019, 36, 492–497. [Google Scholar] [CrossRef]
- San José, I.; Gil, J.J. Coherency vector formalism for polarimetric transformations. Opt. Commun. 2020, 475, 126230. [Google Scholar] [CrossRef]
- Li, P.; Tariq, A.; He, H.; Ma, H. Characteristic Mueller matrices for direct assessment of the breaking of symmetries. Opt. Lett. 2020, 45, 706–709. [Google Scholar] [CrossRef]
- Sheppard, C.J.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. Characterization of the Mueller Matrix: Purity Space and Reflectance Imaging. Photonics 2022, 9, 88. [Google Scholar] [CrossRef]
- Gil, J.J.; Bernabéu, E. Depolarization and polarization indices of an optical system. Opt. Acta 1986, 33, 185–189. [Google Scholar] [CrossRef]
- Gil, J.J.; Bernabéu, E. Obtainment of the polarizing and retardation parameters of a nondepolarizing optical system from its Mueller matrix. Optik 1987, 76, 67–71. [Google Scholar]
- Simon, R. Nondepolarizing systems and degree of polarization. Opt. Commun. 1990, 77, 349–354. [Google Scholar] [CrossRef]
- Lu, S.Y.; Chipman, R.A. Mueller matrices and the degree of polarization. Opt. Commun. 1998, 146, 11–14. [Google Scholar] [CrossRef]
- Tudor, T. Generalized observables in polarization optics. J. Phys. A Math. Gen. 2003, 36, 9577–9590. [Google Scholar] [CrossRef]
- Chipman, R.A. Depolarization index and the average degree of polarization. Appl. Opt. 2005, 44, 2490–2495. [Google Scholar] [CrossRef]
- Aiello, A.; Woerdman, J.P. Physical Bounds to the Entropy-Depolarization Relation in Random Light Scattering. Phys. Rev. Lett. 2005, 94, 090406. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Luna, R.; Bernabeu, E. On the Q (M) depolarization metric. Opt. Commun. 2007, 277, 256–258. [Google Scholar] [CrossRef]
- Espinosa-Luna, R.; Bernabeu, E.; Atondo-Rubio, G. Q (M) and the depolarization index scalar metrics. Appl. Opt. 2008, 47, 1575–1580. [Google Scholar] [CrossRef]
- Espinosa-Luna, R.; Atondo-Rubio, G.; Bernabeu, E.; Hinojosa-Ruíz, S. Dealing depolarization of light in Mueller matrices with scalar metrics. Optik 2010, 121, 1058–1068. [Google Scholar] [CrossRef]
- Ossikovski, R. Alternative depolarization criteria for Mueller matrices. J. Opt. Soc. Am. A 2010, 27, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J. Components of purity of a Mueller matrix. J. Opt. Soc. Am. A 2011, 28, 1578–1585. [Google Scholar] [CrossRef]
- San José, I.; Gil, J.J. Invariant indices of polarimetric purity: Generalized indices of purity for n × n covariance matrices. Opt. Commun. 2011, 284, 38–47. [Google Scholar] [CrossRef]
- Arteaga, O.; Garcia-Caurel, E.; Ossikovski, R. Anisotropy coefficients of a Mueller matrix. J. Opt. Soc. Am. A 2011, 28, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J. Invariant quantities of a Mueller matrix under rotation and retarder transformations. J. Opt. Soc. Am. A 2016, 33, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J. Parameterization of the Mueller matrix. J. Opt. Soc. Am. A 2016, 33, 2323–2332. [Google Scholar] [CrossRef]
- Gil, J.J.; San José, I. Invariant quantities of a nondepolarizing Mueller matrix. J. Opt. Soc. Am. A 2016, 133, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J. Structure of polarimetric purity of a Mueller matrix and sources of depolarization. Opt. Commun. 2016, 368, 165–173. [Google Scholar] [CrossRef]
- Tariq, A.; Li, P.; Chen, D.; Lv, D.; Ma, H. Physically realizable space for the purity-depolarization plane for polarized light scattering media. Phys. Rev. Lett. 2017, 119, 033202. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Le Gratiet, A.; Diaspro, A. Factorization of the coherency matrix of polarization optics. J. Opt. Soc. Am. A 2018, 35, 586–590. [Google Scholar] [CrossRef]
- Ossikovski, R.; Vizet, J. Eigenvalue-based depolarization metric spaces for Mueller matrices. J. Opt. Soc. Am. A 2019, 36, 1173–1186. [Google Scholar] [CrossRef]
- Gil, J.J.; Ossikovski, R.; San José, I. Physical Significance of the Determinant of a Mueller Matrix. Photonics 2022, 9, 246. [Google Scholar] [CrossRef]
- Gil, J.J. Thermodynamic reversibility in polarimetry. Photonics 2022, 9, 650. [Google Scholar] [CrossRef]
- Canabal-Carbia, M.; Estévez, I.; Nabadda, E.; Garcia-Caurel, E.; Gil, J.J.; Ossikovski, R.; Márquez, A.; Moreno, I.; Campos, J.; Lizana, A. Connecting the microscopic depolarizing origin of samples with macroscopic measures of the Indices of Polarimetric Purity. Opt. Laser Eng. 2024, 172, 107830. [Google Scholar] [CrossRef]
- Gil, J.J. Mueller matrix polarizing power. Photonics 2024, 11, 411. [Google Scholar] [CrossRef]
- Sekera, Z. Scattering Matrices and Reciprocity Relationships for Various Representations of the State of Polarization. J. Opt. Soc. Am. 1966, 56, 1732–1740. [Google Scholar] [CrossRef]
- Schönhofer, A.; Kuball, H.-G. Symmetry properties of the Mueller matrix. Chem. Phys. 1987, 115, 159–167. [Google Scholar] [CrossRef]
- Morio, J.; Goudail, F. Influence of the order of diattenuator, retarder and polarizer in polar decomposition of Mueller matrices. Opt. Lett. 2004, 29, 2234–2236. [Google Scholar] [CrossRef] [PubMed]
- Ossikovski, R.; De Martino, A.; Guyot, S. Forward and reverse product decompositions of depolarizing Mueller matrices. Opt. Lett. 2007, 32, 689–691. [Google Scholar] [CrossRef]
- DeBoo, B.; Sasian, J.; Chipman, R. Degree of polarization surfaces and maps for analysis of depolarization. Opt. Express 2004, 12, 4941–4958. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.; San José, I.; Gil, J.J.; Correas, J.M. Geometric modeling of polarimetric transformations. Monografías Seminario Matemático García Galdeano 2006, 33, 115–119. [Google Scholar]
- Tudor, T.; Manea, V. Ellipsoid of the polarization degree: A vectorial, pure operatorial Pauli algebraic approach. J. Opt. Soc. Am. B 2011, 28, 596–601. [Google Scholar] [CrossRef]
- Ossikovski, R.; Gil, J.J.; San José, I. Poincaré sphere mapping by Mueller matrices. J. Opt. Soc. Am. A 2013, 30, 2291–2305. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J.; San José, I. Two-vector representation of a nondepolarizing Mueller matrix. Opt. Commun. 2016, 374, 133–141. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Geometry of the Mueller matrix spectral decomposition. J. Opt. Soc. Am. A 2016, 33, 1331–1340. [Google Scholar] [CrossRef]
- Gil, J.J.; San José, I. Universal Synthesizer of Mueller Matrices Based on the Symmetry Properties of the Enpolarizing Ellipsoid. Symmetry 2021, 13, 983. [Google Scholar] [CrossRef]
- Azzam, R.M.A. Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4×4 matrix calculus. J. Opt. Soc. Am. 1978, 68, 1756–1767. [Google Scholar] [CrossRef]
- Ossikovski, R. Differential matrix formalism for depolarizing anisotropic media. Opt. Lett. 2011, 36, 2330–2332. [Google Scholar] [CrossRef]
- Noble, H.D.; McClain, S.C.; Chipman, R.A. Mueller matrix roots depolarization parameters. Appl. Opt. 2012, 51, 735–744. [Google Scholar] [CrossRef]
- Ossikovski, R. Differential and product Mueller matrix decompositions: A formal comparison. Opt. Lett. 2012, 37, 220–222. [Google Scholar] [CrossRef]
- Kumar, S.; Purwar, H.; Ossikovski, R.I.; Vitkin, A.; Ghosh, N. Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue like turbid media. J. Biomed. Opt. 2012, 17, 105006. [Google Scholar] [CrossRef] [PubMed]
- Devlaminck, V. A physical model of differential Mueller matrix for depolarizing uniform media. J. Opt. Soc. Am. A 2013, 30, 2196–2204. [Google Scholar] [CrossRef]
- Devlaminck, V.; Terrier, P.; Charbois, J. Physically admissible parameterization for differential Mueller matrix of uniform media. Opt. Lett. 2013, 38, 1410–1412. [Google Scholar] [CrossRef] [PubMed]
- Ossikovski, R.; Arteaga, O. Statistical meaning of the differential Mueller matrix of depolarizing homogeneous media. Opt. Lett. 2014, 39, 4470–4473. [Google Scholar] [CrossRef] [PubMed]
- Devlaminck, V.; Ossikovski, R. Uniqueness of the differential Mueller matrix of uniform homogeneous media. Opt. Lett. 2014, 39, 3149–3152. [Google Scholar] [CrossRef]
- Ossikovski, R.; Devlaminck, V. General criterion for the physical realizability of the differential Mueller matrix. Opt. Lett. 2014, 39, 1216–1219. [Google Scholar] [CrossRef]
- Ossikovski, R.; De Martino, A. Differential Mueller matrix of a depolarizing homogeneous medium and its relation to the Mueller matrix logarithm. J. Opt. Soc. Am. A 2015, 32, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Devlaminck, V. Depolarizing differential Mueller matrix of homogeneous media under Gaussian fluctuation hypothesis. J. Opt. Soc. Am. A 2015, 32, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, O. Historical revision of the differential Stokes-Mueller formalism: Discussion. J. Opt. Soc. Am. A 2017, 34, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. Coherency and differential Mueller matrices for polarizing media. J. Opt. Soc. Am. A 2018, 35, 2058–2069. [Google Scholar] [CrossRef] [PubMed]
- Ulaby, F.; Sarabandi, K.; Nashashibi, A. Statistical properties of the Mueller matrix off distributed targets. IEE Proc. F (Radar Signal Process.) 1992, 139, 136–146. [Google Scholar] [CrossRef]
- Sarabandy, K. Derivation of phase statistics from the Mueller matrix. Radio Sci. 1992, 27, 553–560. [Google Scholar] [CrossRef]
- Brosseau, C. Fundamentals of Polarized Light: A Statistical Optics Approach; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Ossikovski, R.; Gil, J.J. Basic properties and classification of Mueller matrices derived from their statistical definition. J. Opt. Soc. Am. A 2017, 34, 1727–1737. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J.; San José, I. Information structure and general characterization of Mueller matrices. J. Opt. Soc. Am. A 2023, 39, 314–321. [Google Scholar] [CrossRef]
- Robson, B.A. The Theory of Polarization Phenomena; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Jones, R.C. A new calculus for the treatment of optical systems Description, I. and discussion of the calculus. J. Opt. Soc. Am. 1941, 31, 488–493. [Google Scholar] [CrossRef]
- Hurwitz, H., Jr.; Jones, R.C. A new calculus for the treatment of optical systems II. Proof of three general equivalence theorems. J. Opt. Soc. Am. 1941, 31, 493–499. [Google Scholar] [CrossRef]
- Jones, R.C. A new calculus for the treatment of optical systems. IV. J. Opt. Soc. Am. 1942, 32, 486–493. [Google Scholar] [CrossRef]
- Jones, R.C. A new calculus for the treatment of optical systems V. A more general formulation, and description of another calculus. J. Opt. Soc. Am. 1947, 37, 107–110. [Google Scholar] [CrossRef]
- Jones, R.C. A new calculus for the treatment of optical systems VI. Experimental determination of the matrix. J. Opt. Soc. Am. 1947, 37, 110–112. [Google Scholar] [CrossRef]
- Jones, R.C. A new calculus for the treatment of optical systems. VII. Properties of the N-matrices. J. Opt. Soc. Am. 1948, 38, 671–685. [Google Scholar] [CrossRef]
- Jones, R.C. New calculus for the treatment of optical systems. VIII. Electromagnetic theory. J. Opt. Soc. Am. 1956, 46, 126–131. [Google Scholar] [CrossRef]
- Ossikovski, R.; Anastasiadou, M.; De Martino, A. Product decompositions of depolarizing Mueller matrices with negative determinants. Opt. Commun. 2008, 281, 2406–2410. [Google Scholar] [CrossRef]
- Arteaga, O.; Canillas, A. Pseudopolar decomposition of the Jones and Mueller-Jones exponential polarization matrices. J. Opt. Soc. Am. A 2009, 26, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Correas, J.M.; Melero, P.; Gil, J.J. Decomposition of Mueller matrices into pure optical media. Monografías Seminario Matemático García Galdeano 2003, 27, 233–240. [Google Scholar]
- Foldyna, M.; Garcia-Caurel, E.; Ossikovski, R.; Martino, A.D.; Gil, J.J. Retrieval of a non-depolarizing component of experimentally determined depolarizing Mueller matrices. Opt. Express 2009, 17, 12794–12806. [Google Scholar] [CrossRef]
- Gil, J.J. Parallel decompositions of Mueller matrices and polarimetric subtraction. In Proceedings of the EPJ Web of Conferences, Palaiseau, France, 7–9 December 2009; Volume 5, p. 04002, API’09—First NanoCharM Workshop on Advanced Polarimetric Instrumentation. [Google Scholar]
- Gil, J.J.; San José, I. Polarimetric subtraction of Mueller matrices. J. Opt. Soc. Am. A 2013, 30, 1078–1088. [Google Scholar] [CrossRef]
- Ossikovski, R.; Garcia-Caurel, E.; Foldyna, M.; Gil, J.J. Application of the arbitrary decomposition to finite spot size Mueller matrix measurements. Appl. Opt. 2014, 53, 6030–6036. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J. On optimal filtering of measured Mueller matrices. Appl. Opt. 2016, 55, 5449–5455. [Google Scholar] [CrossRef]
- Sheppard, C.J.; Castello, M.; Diaspro, A. Expressions for parallel decomposition of the Mueller matrix. J. Opt. Soc. Am. A 2016, 33, 741–751. [Google Scholar] [CrossRef]
- Van Eeckhout, A.; Lizana, A.; Garcia-Caurel, E.; Gil, J.J.; Ossikovski, R.; Campos, J. Synthesis and characterization of depolarizing samples based on the indices of polarimetric purity. Opt. Lett. 2017, 42, 4155–4158. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J.; San José, I. Arbitrary decomposition of Mueller matrices. Opt. Lett. 2019, 44, 5715–5718. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J.; San José, I. Retarding parallel components of a Mueller matrix. Opt. Commun. 2020, 459, 124892. [Google Scholar]
- Gil, J.J.; San José, I.; Ossikovski, R. Serial-parallel decompositions of Mueller matrices. J. Opt. Soc. Am. A 2013, 30, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Samson, J.C. Description of the polarization states of vector processes: Applications to ULF magnetic fields. Geophys. J. Int. 1973, 34, 403–419. [Google Scholar] [CrossRef]
- San José, I.; Gil, J.J. Extended Representation of Mueller Matrices. Photonics 2023, 10, 93. [Google Scholar] [CrossRef]
- Goldstein, D.H.; Chipman, R.A. Error analysis of a Mueller matrix polarimeter. J. Opt. Soc. Am. A 1990, 7, 693–700. [Google Scholar] [CrossRef]
- Tyo, J.S. Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters. Opt. Lett. 2000, 25, 1198–1200. [Google Scholar] [CrossRef]
- Guyot, S.; Vézien, C.; Clairac, B.; Fontas, B. Optical properties filtering using Mueller’s formalism: Application to laser imaging. Optik 2003, 114, 289–297. [Google Scholar] [CrossRef]
- Aiello, A.; Puentes, G.; Voigt, D.J.; Woerdman, P. Maximum-likelihood estimation of Mueller matrices. Opt. Lett. 2006, 31, 817–819. [Google Scholar] [CrossRef]
- Zallat, J.; Aïnouz, S.; Stoll, M.P. Optimal configurations for imaging polarimeters: Impact of image noise and systematicerrors. J. Opt. A Pure Appl. Opt. 2006, 8, 807–814. [Google Scholar] [CrossRef]
- Boulvert, F.; Le Brun, G.; Le Jeune, B.; Cariou, J.; Martin, L. Decomposition algorithm of an experimental Mueller matrix. Opt. Commun. 2009, 282, 692–704. [Google Scholar] [CrossRef]
- Anna, G.; Goudail, F.; Dolfi, D. Optimal discrimination of multiple regions with an active polarimetric imager. Opt. Express 2011, 19, 25367–25378. [Google Scholar] [CrossRef] [PubMed]
- Ossikovski, R. Retrieval of a nondepolarizing estimate from an experimental Mueller matrix through virtual experiment. Opt. Lett. 2012, 37, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Faisan, S.; Heinrich, C.; Sfikas, G.; Zallat, J. Estimation of Mueller matrices using non-local means filtering. Opt. Express 2013, 21, 4424–4438. [Google Scholar] [CrossRef]
- Ossikovski, R.; Arteaga, O. Integral decomposition and polarization properties of depolarizing Mueller matrices. Opt. Lett. 2015, 40, 954–957. [Google Scholar] [CrossRef]
- Ossikovski, R.; Arteaga, O. Instrument-dependent method for obtaining a nondepolarizing estimate from an experimental Mueller matrix. Opt. Eng. 2019, 58, 082409. [Google Scholar] [CrossRef]
- Ossikovski, R.M.; Kuntman, A.; Arteaga, O. Anisotropic integral decomposition of depolarizing Mueller matrices. OSA Contin. 2019, 2, 1900–1907. [Google Scholar] [CrossRef]
- Ossikovski, R.; Arteaga, O. Complete Mueller matrix from a partial polarimetry experiment: The nine-element case. J. Opt. Soc. Am. A 2019, 36, 403–415. [Google Scholar] [CrossRef]
- Arteaga, O.; Ossikovski, R. Complete Mueller matrix from a partial polarimetry experiment: The 12-element case. J. Opt. Soc. Am. A 2019, 36, 416–427. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, J.J.; San José, I. Mueller Matrix Associated with an Arbitrary 4×4 Real Matrix. The Effective Component of a Mueller Matrix. Photonics 2025, 12, 230. https://doi.org/10.3390/photonics12030230
Gil JJ, San José I. Mueller Matrix Associated with an Arbitrary 4×4 Real Matrix. The Effective Component of a Mueller Matrix. Photonics. 2025; 12(3):230. https://doi.org/10.3390/photonics12030230
Chicago/Turabian StyleGil, José J., and Ignacio San José. 2025. "Mueller Matrix Associated with an Arbitrary 4×4 Real Matrix. The Effective Component of a Mueller Matrix" Photonics 12, no. 3: 230. https://doi.org/10.3390/photonics12030230
APA StyleGil, J. J., & San José, I. (2025). Mueller Matrix Associated with an Arbitrary 4×4 Real Matrix. The Effective Component of a Mueller Matrix. Photonics, 12(3), 230. https://doi.org/10.3390/photonics12030230