Near-Field Enhancement in SPASER Nanostructures for High-Efficiency Energy Conversion
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Enhancement of the Near Field
3.2. Energy Conversion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, S.; Li, B.; Wang, X.-Y.; Chen, H.-Z.; Wang, Y.-L.; Zhang, X.-W.; Dai, L.; Ma, R.-M. High-Yield Plasmonic Nanolasers with Superior Stability for Sensing in Aqueous Solution. ACS Photonics 2017, 4, 1355–1360. [Google Scholar] [CrossRef]
- Ma, R.-M.; Ota, S.; Li, Y.; Yang, S.; Zhang, X. Explosives Detection in a Lasing Plasmon Nanocavity. Nat. Nanotechnol. 2014, 9, 600–604. [Google Scholar] [CrossRef]
- Galanzha, E.I.; Weingold, R.; Nedosekin, D.A.; Sarimollaoglu, M.; Nolan, J.; Harrington, W.; Kuchyanov, A.S.; Parkhomenko, R.G.; Watanabe, F.; Nima, Z.; et al. Spaser as a Biological Probe. Nat. Commun. 2017, 8, 15528. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, J.; Song, P.; Kang, B.; Xu, J.; Chen, H. Spaser Nanoparticles for Ultranarrow Bandwidth STED Super-Resolution Imaging. Adv. Mater. 2020, 32, 1907233. [Google Scholar] [CrossRef]
- Stockman, M.I. Spasers Explained. Nat. Photonics 2008, 2, 327–329. [Google Scholar] [CrossRef]
- Nezhad, M.P.; Tetz, K.; Fainman, Y. Gain Assisted Propagation of Surface Plasmon Polaritons on Planar Metallic Waveguides. Opt. Express 2004, 12, 4072. [Google Scholar] [CrossRef]
- De Leon, I.; Berini, P. Modeling Surface Plasmon-Polariton Gain in Planar Metallic Structures. Opt. Express 2009, 17, 20191. [Google Scholar] [CrossRef]
- Li, Y.-F.; Feng, J.; Dong, F.-X.; Ding, R.; Zhang, Z.-Y.; Zhang, X.-L.; Chen, Y.; Bi, Y.-G.; Sun, H.-B. Surface Plasmon-Enhanced Amplified Spontaneous Emission from Organic Single Crystals by Integrating Graphene/Copper Nanoparticle Hybrid Nanostructures. Nanoscale 2017, 9, 19353–19359. [Google Scholar] [CrossRef]
- Hill, M.T.; Marell, M.; Leong, E.S.P.; Smalbrugge, B.; Zhu, Y.; Sun, M.; van Veldhoven, P.J.; Geluk, E.J.; Karouta, F.; Oei, Y.-S.; et al. Lasing in Metal-Insulator-Metal Sub-Wavelength Plasmonic Waveguides. Opt. Express 2009, 17, 11107. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, G.; Liu, X.; Qian, F.; Li, Y.; Sum, T.C.; Lieber, C.M.; Xiong, Q. A Room Temperature Low-Threshold Ultraviolet Plasmonic Nanolaser. Nat. Commun. 2014, 5, 4953. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, J.; Mi, Y.; Sui, X.; Zhang, S.; Du, W.; Wang, R.; Shi, J.; Wu, X.; Qiu, X.; et al. All-Inorganic CsPbBr3 Nanowire Based Plasmonic Lasers. Adv. Opt. Mater. 2018, 6, 1800674. [Google Scholar] [CrossRef]
- Wan, M.; Gu, P.; Liu, W.; Chen, Z.; Wang, Z. Low Threshold Spaser Based on Deep-Subwavelength Spherical Hyperbolic Metamaterial Cavities. Appl. Phys. Lett. 2017, 110, 031103. [Google Scholar] [CrossRef]
- Yang, A.; Li, Z.; Knudson, M.P.; Hryn, A.J.; Wang, W.; Aydin, K.; Odom, T.W. Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals. ACS Nano 2015, 9, 11582–11588. [Google Scholar] [CrossRef]
- Dridi, M.; Jaouadi, A.; Colas, F.; Compère, C. Theoretical Study of High Near-Field Enhancement Associated with the Lasing Action in Strongly Coupled Plasmonic Nanocavity Arrays. J. Phys. Chem. C 2021, 125, 749–756. [Google Scholar] [CrossRef]
- Azzam, S.I.; Kildishev, A.V.; Ma, R.-M.; Ning, C.-Z.; Oulton, R.; Shalaev, V.M.; Stockman, M.I.; Xu, J.-L.; Zhang, X. Ten Years of Spasers and Plasmonic Nanolasers. Light Sci. Appl. 2020, 9, 90. [Google Scholar] [CrossRef]
- Siegman, A.E. Lasers; University Science Books: Mill Valley, CA, USA, 1986. [Google Scholar]
- Zhou, W.; Dridi, M.; Suh, J.Y.; Kim, C.H.; Co, D.T.; Wasielewski, M.R.; Schatz, G.C.; Odom, T.W. Lasing Action in Strongly Coupled Plasmonic Nanocavity Arrays. Nat. Nanotechnol. 2013, 8, 506–511. [Google Scholar] [CrossRef]
- Zheludev, N.I.; Prosvirnin, S.L.; Papasimakis, N.; Fedotov, V.A. Lasing Spaser. Nat. Photonics 2008, 2, 351–354. [Google Scholar] [CrossRef]
- Noginov, M.A.; Zhu, G.; Belgrave, A.M.; Bakker, R.; Shalaev, V.M.; Narimanov, E.E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Demonstration of a Spaser-Based Nanolaser. Nature 2009, 460, 1110–1112. [Google Scholar] [CrossRef]
- Andrianov, E.S.; Baranov, D.G.; Pukhov, A.A.; Dorofeenko, A.V.; Vinogradov, A.P.; Lisyansky, A.A. Loss Compensation by Spasers in Plasmonic Systems. Opt. Express 2013, 21, 13467. [Google Scholar] [CrossRef]
- Boriskina, S.V.; Cooper, T.A.; Zeng, L.; Ni, G.; Tong, J.K.; Tsurimaki, Y.; Huang, Y.; Meroueh, L.; Mahan, G.; Chen, G. Losses in Plasmonics: From Mitigating Energy Dissipation to Embracing Loss-Enabled Functionalities. Adv. Opt. Photonics 2017, 9, 775. [Google Scholar] [CrossRef]
- Garcia-Blanco, S.M.; Sefunc, M.A.; van Voorden, M.H.; Pollnau, M. Loss Compensation in Metal-Loaded Hybrid Plasmonic Waveguides Using Yb3+ Potassium Double Tungstate Gain Materials. In 2012 14th International Conference on Transparent Optical Networks (ICTON); IEEE: Coventry, UK, 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Gjerding, M.N.; Pandey, M.; Thygesen, K.S. Band Structure Engineered Layered Metals for Low-Loss Plasmonics. Nat. Commun. 2017, 8, 15133. [Google Scholar] [CrossRef] [PubMed]
- Güney, D.Ö.; Koschny, T.; Soukoulis, C.M. Reducing Ohmic Losses in Metamaterials by Geometric Tailoring. Phys. Rev. B 2009, 80, 125129. [Google Scholar] [CrossRef]
- Khurgin, J.B. How to Deal with the Loss in Plasmonics and Metamaterials. Nat. Nanotechnol. 2015, 10, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Izyumskaya, N.; Fomra, D.; Ding, K.; Morkoç, H.; Kinsey, N.; Özgür, Ü.; Avrutin, V. High-Quality Plasmonic Materials TiN and ZnO:Al by Atomic Layer Deposition. Phys. Status Solidi RRL—Rapid Res. Lett. 2021, 15, 2100227. [Google Scholar] [CrossRef]
- Hu, H.; Tian, Y.; Chen, P.; Chu, W. Perspective on Tailored Nanostructure-Dominated SPP Effects for SERS. Adv. Mater. 2023, 36, 2303001. [Google Scholar] [CrossRef]
- Li, X.; Zhu, J.; Wei, B. Hybrid Nanostructures of Metal/Two-Dimensional Nanomaterials for Plasmon-Enhanced Applications. Chem. Soc. Rev. 2016, 45, 3145–3187. [Google Scholar] [CrossRef]
- Dridi, M.; Mahjoub, A.; Jaouadi, A. Plasmonic Lasing in Highly Lossy Nanocylinder Arrays under Optical Pumping. Appl. Phys. B 2023, 129, 171. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed.; Artech House Antennas and Propagation Library; Artech House: Boston, MA, USA, 2005. [Google Scholar]
- Böhringer, K.; Hess, O. A Full-Time-Domain Approach to Spatio-Temporal Dynamics of Semiconductor Lasers. I. Theoretical Formulation. Prog. Quantum Electron. 2008, 32, 159–246. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaouadi, A.; Mahjoub, A.; Dridi, M. Near-Field Enhancement in SPASER Nanostructures for High-Efficiency Energy Conversion. Photonics 2025, 12, 123. https://doi.org/10.3390/photonics12020123
Jaouadi A, Mahjoub A, Dridi M. Near-Field Enhancement in SPASER Nanostructures for High-Efficiency Energy Conversion. Photonics. 2025; 12(2):123. https://doi.org/10.3390/photonics12020123
Chicago/Turabian StyleJaouadi, Amine, Ahmed Mahjoub, and Montacer Dridi. 2025. "Near-Field Enhancement in SPASER Nanostructures for High-Efficiency Energy Conversion" Photonics 12, no. 2: 123. https://doi.org/10.3390/photonics12020123
APA StyleJaouadi, A., Mahjoub, A., & Dridi, M. (2025). Near-Field Enhancement in SPASER Nanostructures for High-Efficiency Energy Conversion. Photonics, 12(2), 123. https://doi.org/10.3390/photonics12020123