Tunable Unidirectional Guided Resonances in Momentum Space via a Si-Ge2Sb2Te5 Metasurface
Abstract
1. Introduction
2. Design and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BIC | Bound state in the continuum |
| UGR | Unidirectional guided resonance |
References
- Chen, X.; Huang, L.; Mühlenbernd, H.; Li, G.; Bai, B.; Tan, Q.; Jin, G.; Qiu, C.W.; Zhang, S.; Zentgraf, T. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 2012, 3, 1198. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef]
- Bao, Y.; Jiang, Q.; Kang, Y.; Zhu, X.; Fang, Z. Enhanced optical performance of multifocal metalens with conic shapes. Light Sci. Appl. 2017, 6, e17071. [Google Scholar] [CrossRef]
- Wang, S.; Wu, P.C.; Su, V.C.; Lai, Y.C.; Chen, M.K.; Kuo, H.Y.; Chen, B.H.; Chen, Y.H.; Huang, T.T.; Wang, J.H.; et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 2018, 13, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.; Wen, D.; Xin, J.; Gerardot, B.D.; Li, J.; Chen, X. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 2016, 3, 1558–1563. [Google Scholar] [CrossRef]
- Jiang, Q.; Bao, Y.; Li, J.; Tian, L.; Fang, Z. Bi-channel Near- and Far-field Optical Vortex Generator Based on A Single Plasmonic Metasurface. Photonics Res. 2020, 8, 986–994. [Google Scholar] [CrossRef]
- Devlin, R.C.; Ambrosio, A.; Rubin, N.A.; Mueller, J.B.; Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 2017, 358, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, W.; Gao, J.; Yang, X. Generating Focused 3D Perfect Vortex Beams By Plasmonic Metasurfaces. Adv. Opt. Mater. 2018, 6, 1701228. [Google Scholar] [CrossRef]
- Dorrah, A.H.; Rubin, N.A.; Zaidi, A.; Tamagnone, M.; Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics 2021, 15, 287–296. [Google Scholar] [CrossRef]
- Jiang, Q.; Xiang, H.; Han, D. Polarization-controlled generation and superposition of surface plasmon polariton vortices with a plasmonic metasurface. Appl. Phys. Lett. 2021, 119, 211102. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, L.; Zhao, R.; Zhou, H.; Li, X.; Geng, G.; Li, J.; Li, X.; Wang, Y.; Zhang, S. Basis function approach for diffractive pattern generation with Dammann vortex metasurfaces. Sci. Adv. 2022, 8, eabp8073. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Ansari, M.A.; Paterson, L.; Li, J.; Chen, X. Metasurface for Engineering Superimposed Ince-Gaussian Beams. Adv. Mater. 2024, 36, 2312853. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Xiang, H.; Han, D. Generation of Bessel beams with tunable longitudinal electric and magnetic fields using an all-dielectric metasurface. Opt. Lett. 2023, 48, 920–923. [Google Scholar] [CrossRef]
- Yoon, G.; Lee, D.; Nam, K.T.; Rho, J. Geometric metasurface enabling polarization independent beam splitting. Sci. Rep. 2018, 8, 9468. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Hong, X.; Wang, K.; Wu, J.; Xu, H.X.; Zhao, W.; Liu, W.; Zhang, S.; Garcia-Vidal, F.; Wang, B.; et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photonics 2019, 13, 467–472. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Q.; Han, D. Multi-channel beam splitters based on gradient metasurfaces. Results Phys. 2021, 24, 104084. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Mühlenbernd, H.; Zhang, H.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.W.; Qiu, C.W.; et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 2013, 4, 2808. [Google Scholar] [CrossRef]
- Wen, D.; Yue, F.; Li, G.; Zheng, G.; Chan, K.; Chen, S.; Chen, M.; Li, K.F.; Wong, P.W.H.; Cheah, K.W.; et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 2015, 6, 8241. [Google Scholar] [CrossRef]
- Bao, Y.; Yan, J.; Yang, X.; Qiu, C.W.; Li, B. Point-source geometric metasurface holography. Nano Lett. 2020, 21, 2332–2338. [Google Scholar] [CrossRef]
- Du, B.; Yang, W.; Jiang, Q.; Shan, H.; Luo, D.; Li, B.; Tang, W.; Lin, F.; Shen, B.; Gong, Q.; et al. Plasmonic-functionalized broadband perovskite photodetector. Adv. Opt. Mater. 2018, 6, 1701271. [Google Scholar] [CrossRef]
- Mitrofanov, O.; Hale, L.L.; Vabishchevich, P.P.; Luk, T.S.; Brener, I. Perfectly absorbing dielectric metasurfaces for photodetection. APL Photonics 2020, 5, 101304. [Google Scholar] [CrossRef]
- Stewart, J.W.; Vella, J.H.; Li, W.; Fan, S.; Mikkelsen, M.H. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat. Mater. 2020, 19, 158–162. [Google Scholar] [CrossRef]
- Jiang, Q.; Du, B.; Jiang, M.; Liu, D.; Liu, Z.; Li, B.; Liu, Z.; Lin, F.; Zhu, X.; Fang, Z. Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2. Nanoscale 2020, 12, 5906–5913. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.C.; Shin, E.; Bangle, R.E.; Nikodemski, S.B.; Vella, J.H.; Mikkelsen, M.H. Ultrathin Pyroelectric Photodetector with Integrated Polarization-Sensing Metasurface. Nano Lett. 2023, 23, 6. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Mueller, J.P.B.; Wang, Q.; Yuan, G.; Antoniou, N.; Yuan, X.C.; Capasso, F. Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons. Science 2013, 340, 331–334. [Google Scholar] [CrossRef]
- Jiang, Q.; Bao, Y.; Lin, F.; Zhu, X.; Zhang, S.; Fang, Z. Spin-Controlled Integrated Near- and Far-Field Optical Launcher. Adv. Funct. Mater. 2018, 28, 1705503. [Google Scholar] [CrossRef]
- Liu, B.; Chen, F. Adjustable slow light and optical switch in a black phosphorus metamaterial based on double plasmon-induced transparency. Phys. B Condens. Matter 2025, 714, 417423. [Google Scholar] [CrossRef]
- Zhang, B.; Luo, Y. Dynamic optical tuning and sensing in L-shaped dirac semimetal-based terahertz metasurfaces. Phys. Lett. A 2025, 541, 130419. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, S.; Zhang, H.; Yang, W.; Yi, Z.; Yi, Y.; Wang, J.; Ahmad, S.; Raza, R. Ultrathin broadband terahertz metamaterial based on single-layer nested patterned graphene. Phys. Lett. A 2025, 534, 130262. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Yang, H.; Wang, J.; Li, B.; Zhang, H.; Yi, Y. TiN-Only Metasurface Absorber for Solar Energy Harvesting. Photonics 2025, 12, 443. [Google Scholar] [CrossRef]
- Han, G.W.; Jang, J.; Park, M.; Cho, H.J.; Song, J.; Park, Y. Large-scale fabrication of meta-axicon with circular polarization on CMOS platform. Nanophotonics 2024, 13, 4337–4345. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Zhao, K.; Jiang, J.; Zhao, K.; Guo, Q.; Wang, J.; Zhang, Y.; Chen, G.; Cheng, Q.; Zuo, P.; et al. Metasurface with all-optical tunability for spatially-resolved and multilevel thermal radiation. Nanophotonics 2024, 13, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fan, H.; Ye, H.; Wu, T.; Sun, Y.; Wang, X.; Liu, Y. Design of multifunctional tunable metasurface assisted by elastic substrate. Nanomaterials 2022, 12, 2387. [Google Scholar] [CrossRef]
- Li, X.j.; Hou, X.m.; Cheng, G.; Qiu, G.h.; Yan, D.x.; Li, J.s. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate. Chin. Opt. 2021, 14, 1019–1028. [Google Scholar] [CrossRef]
- Kim, K.; Lee, D.; Eom, S.; Lim, S. Stretchable metamaterial absorber using liquid metal-filled polydimethylsiloxane (PDMS). Sensors 2016, 16, 521. [Google Scholar] [CrossRef]
- Zhen, B.; Hsu, C.W.; Lu, L.; Stone, A.D.; Soljacic, M. Topological Nature of Optical Bound States in the Continuum. Phys. Rev. Lett. 2014, 113, 257401. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, G.; Liu, K.; Tang, Z.; Qiu, C.W. Dynamics of topological polarization singularity in momentum space. Phys. Rev. Lett. 2021, 127, 176101. [Google Scholar] [CrossRef]
- Yin, X.; Jin, J.; Soljačić, M.; Peng, C.; Zhen, B. Observation of topologically enabled unidirectional guided resonances. Nature 2020, 580, 467–471. [Google Scholar] [CrossRef]
- Jiang, Q.; Du, B.; Yue, P.; Yu, Y. Evolution of topological singularities below the light line in momentum space. Opt. Lett. 2024, 49, 4010–4013. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, Y.; Lin, Y.; Xiang, J.; Feng, T.; Cao, Q.; Li, J.; Lan, S.; Liu, J. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 2019, 123, 253901. [Google Scholar] [CrossRef]
- Koshelev, K.; Kruk, S.; Melik-Gaykazyan, E.; Choi, J.H.; Bogdanov, A.; Park, H.G.; Kivshar, Y. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 2020, 367, 288–292. [Google Scholar] [CrossRef]
- Wang, J.; Clementi, M.; Minkov, M.; Barone, A.; Carlin, J.F.; Grandjean, N.; Gerace, D.; Fan, S.; Galli, M.; Houdré, R. Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum. Optica 2020, 7, 1126–1132. [Google Scholar] [CrossRef]
- Wang, J.T.; Tonkaev, P.; Koshelev, K.; Lai, F.; Kruk, S.; Song, Q.; Kivshar, Y.; Panoiu, N.C. Resonantly enhanced second-and third-harmonic generation in dielectric nonlinear metasurfaces. Opto-Electron. Adv. 2024, 7, 230186. [Google Scholar] [CrossRef]
- Yesilkoy, F.; Arvelo, E.R.; Jahani, Y.; Liu, M.; Tittl, A.; Cevher, V.; Kivshar, Y.; Altug, H. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 2019, 13, 390–396. [Google Scholar] [CrossRef]
- Aigner, A.; Tittl, A.; Wang, J.; Weber, T.; Kivshar, Y.; Maier, S.A.; Ren, H. Plasmonic bound states in the continuum to tailor light-matter coupling. Sci. Adv. 2022, 8, eadd4816. [Google Scholar] [CrossRef]
- Du, B.; Zhang, Y.; Xie, F.; Chen, Z.; Wei, S.; Ge, Y.; Tian, X.; Jiang, Q.; Wang, Q.; Zhang, X.; et al. Single-Base Resolution Photonic-Integrated Chips via Hybrid Dielectric–Metal Nanocavities for Ultrasensitive Multichannel Biosensing. ACS Photonics 2024, 11, 4948–4957. [Google Scholar] [CrossRef]
- He, H.; Lai, F.; Zhang, Y.; Zhang, X.; Tian, C.; Li, X.; Wang, Y.; Xiao, S.; Huang, L. Spectro-polarimetric detection enabled by multidimensional metasurface with quasi-bound states in the continuum. Opto-Electron. Adv. 2025, 8, 250015. [Google Scholar] [CrossRef]
- Hirose, K.; Liang, Y.; Kurosaka, Y.; Watanabe, A.; Sugiyama, T.; Noda, S. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 2014, 8, 406–411. [Google Scholar] [CrossRef]
- Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kante, B. Lasing action from photonic bound states in continuum. Nature 2017, 541, 196. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.S.; Lee, H.C.; Kim, K.H.; Jeong, K.Y.; Kwon, S.H.; Koshelev, K.; Kivshar, Y.; Park, H.G. Ultralow-threshold laser using super-bound states in the continuum. Nat. Commun. 2021, 12, 4135. [Google Scholar] [CrossRef]
- Abdollahramezani, S.; Hemmatyar, O.; Taghinejad, M.; Taghinejad, H.; Krasnok, A.; Eftekhar, A.A.; Teichrib, C.; Deshmukh, S.; El-Sayed, M.A.; Pop, E.; et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun. 2022, 13, 1696. [Google Scholar] [CrossRef]
- Williams, C.; Hong, N.; Julian, M.; Borg, S.; Kim, H.J. Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe. Opt. Express 2020, 28, 10583–10594. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, S.; Lopez Garcia, I.; Mio, A.M.; Zallo, E.; Abou El Kheir, O.; Calarco, R.; Bernasconi, M.; Nicotra, G.; Privitera, S.M. Crystallization and electrical properties of Ge-rich GeSbTe alloys. Nanomaterials 2022, 12, 631. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Li, Y.; Wang, W. Rotation-enabled efficient manipulation of bound states in the continuum and unidirectional guided resonances. Opt. Lett. 2025, 50, 2800–2803. [Google Scholar] [CrossRef]
- Xu, W.; Hong, Q.; Liu, P.; Peng, J.; Yang, B.; Zhang, J.; Zhu, Z. High quality factor unidirectional guided resonances of a silicon-on-lithium niobate photonic crystal slab for a tunable Gires–Tournois interferometer. Opt. Lett. 2023, 48, 4761–4764. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.J.; Shi, W.J.; Dong, H.Y.; Li, Y.T.; Li, J.Q.; Dong, Z.G.; Wang, J. Dynamical control of topological unidirectional guided resonances via external magnetic field. Phys. Rev. Res. 2025, 7, 013091. [Google Scholar] [CrossRef]






| a | H | W | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.-Y.; Yu, Y. Tunable Unidirectional Guided Resonances in Momentum Space via a Si-Ge2Sb2Te5 Metasurface. Photonics 2025, 12, 1121. https://doi.org/10.3390/photonics12111121
Zheng Z-Y, Yu Y. Tunable Unidirectional Guided Resonances in Momentum Space via a Si-Ge2Sb2Te5 Metasurface. Photonics. 2025; 12(11):1121. https://doi.org/10.3390/photonics12111121
Chicago/Turabian StyleZheng, Zhi-Yuan, and Ying Yu. 2025. "Tunable Unidirectional Guided Resonances in Momentum Space via a Si-Ge2Sb2Te5 Metasurface" Photonics 12, no. 11: 1121. https://doi.org/10.3390/photonics12111121
APA StyleZheng, Z.-Y., & Yu, Y. (2025). Tunable Unidirectional Guided Resonances in Momentum Space via a Si-Ge2Sb2Te5 Metasurface. Photonics, 12(11), 1121. https://doi.org/10.3390/photonics12111121
