Experimental Demonstration of High-Security and Low-CSPR Single-Sideband Transmission System Based on 3D Lorenz Chaotic Encryption
Abstract
1. Introduction
2. Related Works
3. Principle
4. Experiments and Result Analysis
4.1. Experiment Setup
4.2. Security Analysis Under Known-/Chosen-Plaintext and Side-Channel Models
4.3. Results Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, T.; Rao, R.R. Audio-visual integration in multimodal communication. Proc. IEEE 1998, 86, 837–852. [Google Scholar] [CrossRef]
- Almadani, B.; Mostafa, S.M. IIoT Based Multimodal Communication Model for Agriculture and Agro-Industries. IEEE Access 2021, 9, 10070–10088. [Google Scholar] [CrossRef]
- Ren, C.; Gong, C.; Liu, L. Task-Oriented Multimodal Communication Based on Cloud–Edge–UAV Collaboration. IEEE Internet Things J. 2024, 11, 125–136. [Google Scholar] [CrossRef]
- Kanter, G.S.; Reilly, D.; Smith, N. Practical physical-layer encryption: The marriage of optical noise with traditional cryptography. IEEE Commun. Mag. 2009, 47, 74–81. [Google Scholar] [CrossRef]
- Zhang, J.; Marshall, A.; Woods, R.; Duong, T.Q. Design of an OFDM Physical Layer Encryption Scheme. IEEE Trans. Veh. Technol. 2017, 66, 2114–2127. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, J.; Jiao, L.; Shi, J.; Wang, S. A Novel Physical Layer Encryption Algorithm for LoRa. IEEE Commun. Lett. 2021, 25, 2512–2516. [Google Scholar] [CrossRef]
- Li, S.; Zheng, X.; Mou, X.; Cai, Y.L. Chaotic encryption scheme for real-time digital video. In Proceedings of the IS&T/SPIE 14th Annual Symposium on Electronic Imaging, San Jose, CA, USA, 20–25 January 2002; SPIE: Bellingham, WA, USA, 2002; Volume 4666, pp. 149–160. [Google Scholar]
- Dai, S.; Sun, K.; Ai, W.; Peng, Y. Novel discrete chaotic system via fractal transformation and its DSP implementation. Mod. Phys. Lett. B 2020, 34 (Suppl. S1), 2050429. [Google Scholar] [CrossRef]
- Yu, C.; Gao, R.; Wang, F.; Li, Z.; Guo, D.; Chang, H.; Zhou, S.; Liu, X.; Wang, F.; Gao, Y.; et al. Modified low CSPR Kramer–Kronig receivers based on a signal–signal beat interference estimation. Opt. Express 2022, 30, 28251–28267. [Google Scholar]
- Hoang, T.M.; Sowailem, M.Y.S.; Zhuge, Q.; Xing, Z.; Morsy-Osman, M.; El-Fiky, E.; Fan, S.; Xiang, M.; Plant, D.V. Single wavelength 480 Gb/s direct detection over 80km SSMF enabled by Stokes vector Kramers Kronig transceiver. Opt. Express 2017, 25, 33534–33542. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, B.; Mao, Y.; Ullah, R.; Ren, J.; Chen, S.; Jiang, L.; Han, S.; Zhang, J.; Shen, J. High security OFDM-PON with a physical layer encryption based on 4D-hyperchaos and dimension coordination optimization. Opt. Express 2020, 28, 21236–21246. [Google Scholar]
- Ren, J.; Liu, B.; Zhao, D.; Han, S.; Chen, S.; Mao, Y.; Wu, Y.; Song, X.; Zhao, J.; Liu, X.; et al. Chaotic constant composition distribution matching for physical layer security in a PS-OFDM-PON. Opt. Express 2020, 28, 39266–39276. [Google Scholar] [CrossRef]
- Tang, R.; Ren, J.; Fang, J.; Mao, Y.; Han, Y.; Shen, J.; Zhong, Q.; Wu, X.; Tian, F.; Liu, B. Security strategy of parallel bit interleaved FBMC/OQAM based on four-dimensional chaos. Opt. Express 2021, 29, 24561–24575. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, Y.; Wang, S.; Yan, Y.; Wang, B.; Chen, Y.; Zhou, Z.; He, J.; Yang, L. Probabilistic shaping based constellation encryption for physical layer security in OFDM RoF system. Opt. Express 2021, 29, 17890–17901. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Tang, X.; Li, F.; Xu, Z.; Zhang, X. Enhanced Physical Layer Security and PAPR Performance Based on Disturbance of Data Cluster Under Chaotic Sequence Color Seeking Mechanism in CO-OFDM System. J. Light. Technol. 2023, 41, 6507–6513. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Ding, H.; Li, Z.; Wang, X. Physical Layer Encryption for CO-OFDM Systems Enabled by Camera Projection Scrambler. Mathematics 2024, 12, 1807. [Google Scholar] [CrossRef]
- Chen, Q.; You, W.; Wen, H.; Chen, M.; Ma, J. Dual chaotic encryption scheme for index modulation orthogonal time frequency space PON system. Opt. Express 2025, 33, 30997–31009. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Q.; Xin, X.; Sun, M.; Gao, R.; Yao, H.; Tian, F.; Tian, Q.; Wang, Y.; Wang, F.; et al. Security enhancement for NOMA-PON with 2D cellular automata and Turing pattern cascading scramble aided fixed-point extended logistic chaotic encryption. J. Opt. Commun. Netw. 2024, 16, 1204–1217. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, X.; Zhang, Q.; Xin, X.; Gao, R.; Yao, H.; Tian, F.; Wang, F.; Li, Z.; Liu, X.; et al. Chaotic index modulation and subcarrier intra-block-inter-block shuffling for secure CO-OFDM-PON based on a hybrid 4D chaos. Opt. Express 2025, 33, 21217–21235. [Google Scholar] [CrossRef]
- Mecozzi, A.; Antonelli, C.; Shtaif, M. Kramers–Kronig coherent receiver. Optica 2016, 3, 1220–1227. [Google Scholar] [CrossRef]
- Li, Z.; Erkılınç, M.S.; Shi, K.; Sillekens, E.; Galdino, L.; Thomsen, B.C.; Bayvel, P.; Killey, R.I. SSBI mitigation and the Kramers–Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation. J. Light. Technol. 2017, 35, 1887–1893. [Google Scholar] [CrossRef]
- Chen, X.; Antonelli, C.; Chandrasekhar, S.; Raybon, G.; Sinsky, J.; Mecozzi, A.; Shtaif, M.; Winzer, P. 218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 19–23 March 2017; Optica Publishing Group: Washington, DC, USA, 2017. [Google Scholar]
- Le, S.T.; Schuh, K.; Chagnon, M.; Buchali, F.; Dischler, R.; Aref, V. 1.72-Tb/s virtual-carrier-assisted direct-detection transmission over 200 km. J. Light. Technol. 2018, 36, 1347–1353. [Google Scholar] [CrossRef]
- Kong, D.; da Silva, E.P.; Sasaki, Y.; Aikawa, K.; Da Ros, F.; Galili, M.; Morioka, T.; Oxenløwe, L.K.; Hu, H. Kramers–Kronig detection with adaptive rates for 909.5 Tbit/s dense SDM and WDM data channels. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–3. [Google Scholar]
- Che, D.; Sun, C.; Shieh, W. Single-channel 480-Gb/s direct detection of POL-MUX IQ signal using single-sideband Stokes vector receiver. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; Optica Publishing Group: Washington, DC, USA, 2018. [Google Scholar]
- Zhu, Y.; Zou, K.; Ruan, X.; Zhang, F. Single carrier 400G transmission with single-ended heterodyne detection. IEEE Photonics Technol. Lett. 2017, 29, 1788–1791. [Google Scholar]
- Li, Z.; Galdino, L.; Xu, T.; Erkılınç, M.; Shi, K.; Sillekens, E.; Thomsen, B.; Bayvel, P.; Killey, R. Performance of digital back-propagation in Kramers-Kronig direct-detection receivers. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; Optica Publishing Group: Washington, DC, USA, 2018. [Google Scholar]





| Scheme | PAPR Impact | BER/Sensitivity Performance | Complexity |
|---|---|---|---|
| This work: 3D Lorenz + low-CSPR KK-SSB | Negligible increase vs. non-encrypted baseline | B2B and 25 km: BER nearly overlaps non-encrypted for legitimate key; wrong/unknown keys >> HD-FEC | Low (fixed-point Lorenz + bitwise XOR; no PS/PTS/block shuffling) |
| 4D hyperchaos + dimension coordination (Zhao et al., Optics Express 2020) [11] | Discussed, no explicit Δ reported | ~1 dB sensitivity gain vs. uniform 16QAM-OFDM | Medium–high (4D factors + PS + coordination) |
| Chaotic-CCDM PS (Ren et al., Optics Express 2020) [12] | Not reported | ~1.2 dB sensitivity improvement at BER = 1 × 10−3 vs. uniform | Medium (CCDM mapping/inverse) |
| PS-based constellation encryption (Wang et al., Optics Express 2021) [14] | Not reported | Focus on security/feasibility; key space ~10121 | Medium (PS pipeline + encryption) |
| Color-seeking chaotic cluster disturbance (Liu et al., JLT 2023) [15] | PAPR ↓ ~0.5 dB | Sensitivity not reported (illegal BER ~0.5 shown) | Medium (clustering/sorting + search) |
| Camera-projection scrambler + 5D hyperchaos (Li et al., Mathematics 2024, sim.) [16] | PAPR ↓ ~0.8 dB | Mainly security and simulation feasibility | Medium–high (projection + 5D chaos) |
| Dual-chaos + RIPTS (Chen et al., Optics Express 2025) [17] | PAPR improvement 4.3 dB; 0.5–0.8 dB better than PTS/IPTS/RPTS | Reduces ICI with shaping–performance tradeoff | Medium–High (segmentation/interleaving + references) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Zhu, A.; Yu, H.; Li, Y.; Yang, M.; Hu, P.; Zhang, H.; Chen, X.; Qi, H.; Wang, D.; et al. Experimental Demonstration of High-Security and Low-CSPR Single-Sideband Transmission System Based on 3D Lorenz Chaotic Encryption. Photonics 2025, 12, 1042. https://doi.org/10.3390/photonics12111042
Yu C, Zhu A, Yu H, Li Y, Yang M, Hu P, Zhang H, Chen X, Qi H, Wang D, et al. Experimental Demonstration of High-Security and Low-CSPR Single-Sideband Transmission System Based on 3D Lorenz Chaotic Encryption. Photonics. 2025; 12(11):1042. https://doi.org/10.3390/photonics12111042
Chicago/Turabian StyleYu, Chao, Angli Zhu, Hanqing Yu, Yuanfeng Li, Mu Yang, Peijin Hu, Haoran Zhang, Xuan Chen, Hao Qi, Deqian Wang, and et al. 2025. "Experimental Demonstration of High-Security and Low-CSPR Single-Sideband Transmission System Based on 3D Lorenz Chaotic Encryption" Photonics 12, no. 11: 1042. https://doi.org/10.3390/photonics12111042
APA StyleYu, C., Zhu, A., Yu, H., Li, Y., Yang, M., Hu, P., Zhang, H., Chen, X., Qi, H., Wang, D., Qin, Y., Zhong, X., Zhao, D., & Liu, Y. (2025). Experimental Demonstration of High-Security and Low-CSPR Single-Sideband Transmission System Based on 3D Lorenz Chaotic Encryption. Photonics, 12(11), 1042. https://doi.org/10.3390/photonics12111042

