Integrated Terahertz FMCW Radar and FSK Communication Enabled by High-Speed Wavelength Tunable Lasers
Abstract
1. Introduction
2. Key Technologies and Devices
2.1. Photomixing-Based THz Wave Generation
2.2. Principle of FMCW Radar
2.3. Reflection-Type Transversal Filter Laser Diode
3. Experimental Setup
3.1. Transmitter Configuration
3.2. THz FSK Communication Setup
3.3. THz FMCW Radar Setup
4. Results and Discussions
4.1. THz FSK Communication Performance
4.2. THz FMCW Radar Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications. IEEE Access 2017, 5, 6757–6779. [Google Scholar] [CrossRef]
- Alhammadi, A.; Al-Alawi, R.M.; Jahdhami, M.A.A.; El-Saleh, A.A.; Ismail, Z.H.; Shamsan, Z.A.; Shayea, I. Revolutionizing Mobile Broadband: Assessing Multicellular Networks in Indoor and Outdoor Environments. IEEE Access 2024, 12, 120840–120863. [Google Scholar] [CrossRef]
- Song, H.-J.; Lee, N. Terahertz Communications: Challenges in the Next Decade. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 105–117. [Google Scholar] [CrossRef]
- Song, H.-J.; Nagatsuma, T. Present and Future of Terahertz Communications. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256–263. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Han, C.; Hu, Z.; Nie, S.; Jornet, J.M. Terahertz Band Communication: An Old Problem Revisited and Research Directions for the Next Decade. IEEE Trans. Commun. 2022, 70, 4250–4285. [Google Scholar] [CrossRef]
- Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.S. Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems. IEEE Open J. Commun. Soc. 2019, 1, 1–32. [Google Scholar] [CrossRef]
- Huq, K.M.S.; Busari, S.A.; Rodriguez, J.; Frascolla, V.; Bazzi, W.; Sicker, D.C. Terahertz-Enabled Wireless System for Beyond-5G Ultra-Fast Networks: A Brief Survey. IEEE Netw. 2019, 33, 89–95. [Google Scholar] [CrossRef]
- Yu, X.; Chen, Y.; Galili, M.; Morioka, T.; Jepsen, P.U.; Oxenløwe, L.K. The prospects of ultra-broadband THz wireless communications. In Proceedings of the 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, 6–10 July 2014. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Oogimoto, K.; Yasuda, Y.; Fujita, Y.; Inubushi, Y.; Hisatake, S.; Martinez Agoues, A.; Crespo Lopez, G. 300-GHz-band wireless transmission at 50 Gbit/s over 100 meters. In Proceedings of the 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016. [Google Scholar] [CrossRef]
- Liu, K.; Jia, S.; Wang, S.; Pang, X.; Li, W.; Zheng, S.; Chi, H.; Jin, X.; Zhang, X.; Yu, X. 100 Gbit/s THz Photonic Wireless Transmission in the 350-GHz Band With Extended Reach. IEEE Photonics Technol. Lett. 2018, 30, 1064–1067. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Zhao, L.; Zhou, W.; Wang, K.; Kong, M.; Chang, G.-K.; Zhang, Y.; Pan, X.; Xin, X. 132-Gb/s Photonics-Aided Single-Carrier Wireless Terahertz-Wave Signal Transmission at 450 GHz Enabled by 64QAM Modulation and Probabilistic Shaping. In Proceedings of the Optical Fiber Communication Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019. [Google Scholar] [CrossRef]
- Lai, Z.; Li, C.; Li, Y.; Lai, X.; Li, J.; Guan, K. A High-order Modulation (64-QAM) Broadband THz Communication System over 100 Gbps. In Proceedings of the 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, 18–20 August 2021. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Z.; Lyu, Z.; Yang, H.; Zhang, L.; Ozolins, O.; Pang, X.; Zhang, X.; Yu, X. 300 GHz photonic-wireless transmission with aggregated 1.034 Tbit/s data rate over 100 m wireless distance. In Proceedings of the Optical Fiber Communication Conference and Exhibition (OFC), San Diego, CA, USA, 24–28 March 2024. [Google Scholar] [CrossRef]
- Bhutani, A.; Marahrens, S.; Gehringer, M.; Göttel, B.; Pauli, M.; Zwick, T. The Role of Millimeter-Waves in the Distance Measurement Accuracy of an FMCW Radar Sensor. Sensors 2019, 19, 3938. [Google Scholar] [CrossRef]
- Li, Y.; Kaname, R.; Mizuno, R.; Li, Y.; Fujita, M.; Ito, H.; Nagatsuma, T. Ultra-Wideband Frequency Modulated Continuous Wave Photonic Radar System for Three-Dimensional Terahertz Synthetic Aperture Radar Imaging. J. Light. Technol. 2022, 40, 6719–6728. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Jia, S.; Yu, X.; Jin, X.; Zheng, S.; Chi, H.; Zhang, X. Experimental generation of linearly chirped 350 GHz band pulses with a bandwidth beyond 60 GHz. Opt. Lett. 2017, 42, 5242–5245. [Google Scholar] [CrossRef] [PubMed]
- Liebermeister, L.; Nellen, S.; Kohlhaas, R.B.; Lauck, S.; Deumer, M.; Breuer, S.; Schell, M.; Globisch, B. Optoelectronic frequency-modulated continuous-wave terahertz spectroscopy with 4 THz bandwidth. Nat. Commun. 2021, 12, 1071. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, N.; Grzeslo, M.; Iwamatsu, S.; Tebart, J.; Haddad, T.; Stöhr, A. Ultra-Broadband Photonic THz Transceiver IC for High Range-Resolution FMCW RADAR. In Proceedings of the 4th URSI Atlantic Radio Science Meeting (AT-RASC), Meloneras, Spain, 19–24 May 2024. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Keil, A.; Kocybik, M.; Schwenson, L.M.; Liebermeister, L.; Kohlhaas, R.; Globisch, B.; von Freymann, G.; Seewig, J.; Friederich, F. Extreme Ultra-Wideband Optoelectronic Frequency-Modulated Continuous-Wave Terahertz Radar. Laser Photonics Rev. 2023, 17, 2300396. [Google Scholar] [CrossRef]
- Ye, S.; Wang, Y.; Li, B.; Kaide, R.; Che, M.; Mikami, Y.; Ueda, Y.; Kato, K. Photonic Generation of Crossed-dual-chirp THz LFM Signal by Single Tunable Laser. IEEE Photonics Technol. Lett. 2025, 37, 1269–1272. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Jia, S.; Wang, S.; Liu, K.; Pang, X.; Zhang, H.; Jin, X.; Zheng, S.; Chi, H.; Zhang, X.; Yu, X. A Unified System With Integrated Generation of High-Speed Communication and High-Resolution Sensing Signals Based on THz Photonics. J. Light. Technol. 2018, 36, 4549–4556. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Ding, J.; Zhang, J.; Zhu, M.; Zhao, F.; Wang, M.; Yu, J. Integrated High-Resolution Radar and Long-Distance Communication Based-on Photonic in Terahertz Band. J. Light. Technol. 2022, 40, 2731–2738. [Google Scholar] [CrossRef]
- Sümen, G.; Kurt, G.K.; Görçin, A. A Novel LFM Waveform for Terahertz-Band Joint Radar and Communications over Inter-Satellite Links. In Proceedings of the 2022 IEEE Global Communications Conference (GLOBECOM), Rio de Janeiro, Brazil, 4–8 December 2022. [Google Scholar] [CrossRef]
- Che, M.; Li, B.; Tang, H.; Ye, S.; Kamiura, Y.; Kato, K. Photonic Generation of Joint Amplitude-Frequency Modulated Waveform for THz Integrated Sensing and Communication. Microw. Opt. Technol. Lett. 2025, 67, e70216. [Google Scholar] [CrossRef]
- Yamazaki, H.; Nagatani, M.; Wakita, H.; Ogiso, Y.; Nakamura, M.; Ida, M.; Nosaka, H.; Hashimoto, T.; Miyamoto, Y. IMDD Transmission at Net Data Rate of 333 Gb/s Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach–Zehnder Modulator. J. Light. Technol. 2019, 37, 1772–1778. [Google Scholar] [CrossRef]
- Ye, S.; Masutomi, N.; Li, B.; Kamiura, Y.; Kaide, R.; Doi, R.; Wang, Y.; Che, M.; Mikami, Y.; Ueda, Y.; et al. Ultra-fast photonic frequency hopping driven by reflection-type transversal filter laser for anti-jamming terahertz communications. Opt. Lett. 2025, 50, 3070–3073. [Google Scholar] [CrossRef]
- Jia, S.; Zhang, L.; Wang, S.; Li, W.; Qiao, M.; Lu, Z.; Idrees, N.M.; Pang, X.; Hu, H.; Zhang, X.; et al. 2 × 300 Gbit/s Line Rate PS-64QAM-OFDM THz Photonic-Wireless Transmission. J. Light. Technol. 2020, 38, 4715–4721. [Google Scholar] [CrossRef]
- He, D.; Wang, Z.; Quek, T.Q.S.; Chen, S.; Hanzo, L. Deep Learning-Assisted TeraHertz QPSK Detection Relying on Single-Bit Quantization. IEEE Trans. Commun. 2021, 69, 8175–8187. [Google Scholar] [CrossRef]
- Moon, S.-R.; Sung, M.; Lee, J.K.; Cho, S.-H. Cost-Effective Photonics-Based THz Wireless Transmission Using PAM-N Signals in the 0.3 THz Band. J. Light. Technol. 2020, 39, 357–362. [Google Scholar] [CrossRef]
- Ding, J.; Kong, M.; Wang, K.; Yu, J. THz PAM-4 signal generation by a modulator driven by binary scheme with different driving voltages. Opt. Fiber Technol. 2020, 60, 102360. [Google Scholar] [CrossRef]
- Shrestha, R.; Guerboukha, H.; Fang, Z.; Knightly, E.; Mittleman, D.M. Jamming a terahertz wireless link. Nat. Commun. 2022, 13, 3045. [Google Scholar] [CrossRef]
- Nagatsuma, T. Photodetectors for Microwave Photonics. In Photodetectors; Elsevier: Amsterdam, The Netherlands, 2023; pp. 467–484. [Google Scholar]
- Nagatsuma, T.; Gao, W.; Kawamoto, Y.; Ohara, T.; Ito, H.; Ishibashi, T. InP-based Integrated Circuits on SiC/Si Substrates for Terahertz Communications. J. Light. Technol. 2025. Early Access. [Google Scholar] [CrossRef]
- Ishibashi, T.; Ito, H. Uni-traveling-carrier photodiodes. J. Appl. Phys. 2020, 127, 031101. [Google Scholar] [CrossRef]
- Jia, S.; Lo, M.C.; Zhang, L.; Ozolins, O.; Udalcovs, A.; Kong, D.; Pang, X.; Guzman, R.; Yu, X.; Xiao, S.; et al. Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications. Nat. Commun. 2022, 13, 1388. [Google Scholar] [CrossRef] [PubMed]
- Tomimura, Y.; Satou, A.; Kita, T. Generation of Millimeter Waves and Sub-Terahertz Waves Using a Two-Wavelength Tunable Laser for a Terahertz Wave Transceiver. Photonics 2024, 11, 811. [Google Scholar] [CrossRef]
- Ueda, Y.; Saito, Y.; Shindo, T.; Kanazawa, S.; Kobayashi, W.; Matsuzaki, H.; Ishikawa, M. Hitless Wavelength Switching of Semiconductor Optical Amplifier-Integrated Reflection-Type Transversal Filter Laser With Suppressed Frequency Error. J. Light. Technol. 2023, 41, 2765–2774. [Google Scholar] [CrossRef]
Year | Data Rate | Modulation | Ranging Accuracy | Sweep Duration | Sweep Bandwidth | Cost |
---|---|---|---|---|---|---|
2018 [22] | 56 Gbit/s (offline) | 16-QAM | Not tested | 6–7 ns (pulsed) | 20–28 GHz | High |
2022 [23] | 38.1 Gbit/s (offline) | OFDM PS-256QAM | ≈1.6 cm | 10 ns (pulsed) | – | High |
2025 [25] | 2 Gbit/s (online) | 2ASK | Not tested | – | – | Low |
2025 (This work) | 2 Gbit/s (online) | 2FSK (No modulator) | ≈1 cm | 400 ns (continuous) | 7.9 GHz | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaide, R.; Ye, S.; Wang, Y.; Mikami, Y.; Ueda, Y.; Kato, K. Integrated Terahertz FMCW Radar and FSK Communication Enabled by High-Speed Wavelength Tunable Lasers. Photonics 2025, 12, 977. https://doi.org/10.3390/photonics12100977
Kaide R, Ye S, Wang Y, Mikami Y, Ueda Y, Kato K. Integrated Terahertz FMCW Radar and FSK Communication Enabled by High-Speed Wavelength Tunable Lasers. Photonics. 2025; 12(10):977. https://doi.org/10.3390/photonics12100977
Chicago/Turabian StyleKaide, Ryota, Shenghong Ye, Yiqing Wang, Yuya Mikami, Yuta Ueda, and Kazutoshi Kato. 2025. "Integrated Terahertz FMCW Radar and FSK Communication Enabled by High-Speed Wavelength Tunable Lasers" Photonics 12, no. 10: 977. https://doi.org/10.3390/photonics12100977
APA StyleKaide, R., Ye, S., Wang, Y., Mikami, Y., Ueda, Y., & Kato, K. (2025). Integrated Terahertz FMCW Radar and FSK Communication Enabled by High-Speed Wavelength Tunable Lasers. Photonics, 12(10), 977. https://doi.org/10.3390/photonics12100977