Quantitative Strain Measurements of Kevlar Fibers in Composite Concrete Using Raman Spectroscopy
Abstract
1. Introduction
2. Basic Principles
3. Experiments
3.1. Single-Fiber Test Process
3.2. Raman Spectroscopy
4. Results and Discussions
4.1. Relationship Between Raman Spectral Parameters and Strains of Single Kevlar Fiber
4.2. Relationship Between Spectral Parameters and Strain of Single Fiber in Concrete
- Laser intensity fluctuation during repeated measurements;
- Fiber surface heterogeneity (wrinkles and defects affecting scattering efficiency);
- The surface of fiber being broken after being excessively loaded and the Raman reflection signal intensity being disturbed.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Toapanta, O.G.; Paredes, J.; Meneses, M.; Salinas, G. Validation of DOE Factorial/Taguchi/Surface Response Models of Mechanical Properties of Synthetic and Natural Fiber Reinforced Epoxy Matrix Hybrid Material. Polymers 2024, 16, 2051. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, Y.; Zhang, Y.; Wang, Z.; Zhang, Z. A quantitative assessment of the rehabilitative impact of Kevlar liners on offshore pipelines. Eng. Fail. Anal. 2024, 164, 108616. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Mori, Y.; Maegawa, M.; Katagiri, G.; Ishida, H.; Ishitani, A. Raman scattering from diamond particles. Appl. Phys. Lett. 1993, 62, 3114–3116. [Google Scholar] [CrossRef]
- McCreery, R.L.; Cooper, J.B. Raman Spectroscopy for Chemical Analysis. Appl. Spectrosc. 2001, 55, 295–308. [Google Scholar] [CrossRef]
- Kothari, D.; Reddy, V.R.; Sathe, V.; Gupta, A.; Banerjee, A.; Awasthi, A. Raman scattering study of polycrystalline magnetoelectric BiFeO3. J. Magn. Magn. Mater. 2008, 320, 548–552. [Google Scholar] [CrossRef]
- Schedin, F.; Lidorikis, E.; Lombardo, A.; Kravets, V.G.; Geim, A.K.; Grigorenko, A.N.; Novoselov, K.S.; Ferrari, A.-C. Surface Enhanced Raman Spectroscopy of Graphene. ACS Nano 2010, 4, 5617–5626. [Google Scholar] [CrossRef]
- Liang, L.Y.; Liu, Z.M.; Cao, H.T.; Yu, Z.; Shi, Y.Y.; Chen, A.H.; Zhang, H.Z.; Fang, Y.Q.; Sun, X.L. Phase and Optical Characterizations of Annealed SnO Thin Films and Their p-Type TFT Application. J. Electrochem. Soc. 2010, 157, H598–H602. [Google Scholar] [CrossRef]
- Kalbac, M.; Reina-Cecco, A.; Farhat, H.; Kong, J.; Kavan, L.; Dresselhaus, M.S. The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene. ACS Nano 2010, 4, 6055–6063. [Google Scholar] [CrossRef] [PubMed]
- Stock, G.; Woywod, C.; Domcke, W.; Swinney, T.; Hudson, B.S. Resonance Raman spectroscopy of the S1 and S2 states of pyrazine: Experiment and first principles calculation of spectra. J. Chem. Phys. 1995, 103, 6851–6860. [Google Scholar] [CrossRef]
- Bergholt, M.S.; Zheng, W.; Lin, K.; Ho, K.Y.; Teh, M.; Yeoh, K.G.; So, J.B.Y.; Huang, Z. Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection. J. Biomed. Opt. 2011, 16, 037003. [Google Scholar] [CrossRef]
- Malfait, W.J.; Zakaznova-Herzog, V.P.; Halter, W.E. Quantitative Raman spectroscopy: High-temperature speciation of potassium silicate melts. J. Non-Cryst. Solids 2007, 353, 4029–4042. [Google Scholar] [CrossRef]
- El-Abassy, R.M.; Eravuchira, P.J.; Donfack, P.; von der Kammer, B.; Materny, A. Fast determination of milk fat content using Raman spectroscopy. Vib. Spectrosc. 2011, 56, 3–8. [Google Scholar] [CrossRef]
- Samek, O.; Al-Marashi, J.F.M.; Telle, H.H. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010, 7, 378–383. [Google Scholar] [CrossRef]
- Peike, C.; Kaltenbach, T.; Wei, K.A.; Koehl, M. Non-destructive degradation analysis of encapsulants in PV modules by Raman Spectroscopy. Sol. Energy Mater. Sol. Cells 2011, 95, 1686–1693. [Google Scholar] [CrossRef]
- Haheim, M.L.; Echtermeyer, A.T. Measuring changing strain fields in composites with Distributed Fiber-Optic Sensing using the optical backscatter reflectometer. Compos. Part B Eng. 2015, 74, 138–146. [Google Scholar]
- Dyshlyuk, A.V.; Makarova, N.V.; Vitrik, O.B.; Kul’chin, Y.N.; Babin, S.A. Features of Monitoring Deformation Processes in Ferro-Concrete Designs with Application of the Reflectometer Method of Recording Signals of Fiber Bragg Gratings. Meas. Tech. 2017, 60, 701–705. [Google Scholar] [CrossRef]
- Almubaied, O.; Chai, H.K.; Islam, M.R.; Lim, K.S.; Tan, C.G. Fiber-Optic Sensor and Deep Learning-Based Structural Health Monitoring of Concrete Pipe Under Cyclic Loading. IEEE Trans. Instrum. Meas. 2017, 60, 701–705. [Google Scholar]
- Wang, Y. Experimental Study on Fiber Micromechanics. Master’s Thesis, Dalian University of Technology, Dalian, China, 2014. [Google Scholar]
- Wopenka, B.; Freeman, J.J.; Nikischer, T. Micro-Raman Spectroscopy of a Carbonaceous ‘Carrot’ from the Chondritic Breccia Acfer 182: A New Matrix Mineral Phase or a Shock-Induced Product? Appl. Spectrosc. 1998, 52, 54. [Google Scholar] [CrossRef]
- Huang, L.; Zuyuan, H.E.; Fan, X. Simplified single-end Rayleigh and Brillouin hybrid distributed fiber-optic sensing system. Chin. Sci. Inf. Sci. 2023, 66, 2. [Google Scholar] [CrossRef]
- Tangudu, R.; Sahu, P.K. Review on the Developments and Potential Applications of the Fiber Optic Distributed Temperature Sensing System. IETE Tech. Rev. 2022, 39, 553–567. [Google Scholar] [CrossRef]
- Xu, S.; Liu, B.; Wei, Z.; Wang, T.; Peng, P.; Erdenechimeg, T.; Li, X.; Liu, H. Fabrication of High-Sensitivity Flexible Fiber Bragg Gratings Pressure Sensors for Comprehensive Plantar Pressure Monitoring. IEEE Sens. J. 2024, 24, 32150–32163. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, W.; Ding, G.; Chang, L. Fiber bragg grating sensing-based torsional performance monitoring system for carbon fiber reinforced plastic drive shafts. Proc. SPIE 2024, 13226, 9. [Google Scholar]
Stretch Length (mm) | Axial Strain (%) | The Area Under Characteristic Peak | Transverse Strain (%) | Fiber Diameter (mm) |
---|---|---|---|---|
0 | 0 | 252,499.2 | 0 | 1.213675 |
0.1 | 0.25 | 252,223.800 | −0.1090696 | 1.213674804 |
0.2 | 0.5 | 251,336.9618 | −0.4602938 | 1.20940743 |
0.3 | 0.75 | 251,063.1754 | −0.5687244 | 1.208089999 |
0.4 | 1 | 250,337.2261 | −0.85623 | 1.204596806 |
0.5 | 1.25 | 249,463.5789 | −0.97128 | 1.200392906 |
0.6 | 1.5 | 248,296.6033 | −1.20223 | 1.19477754 |
0.7 | 1.75 | 247,545.5662 | −1.56184 | 1.191163627 |
0.8 | 2 | 245,641.3217 | −2.716 | 1.182006 |
0.9 | 2.25 | 224,029.3476 | −11.2752248 | 1.078006019 |
1 | 2.5 | 195,759.8634 | −22.4710956 | 0.941976188 |
1.1 | 2.75 | 96,010.56371 | −61.9758939 | 0.461992889 |
1.2 | 3 | 91,731.94027 | −63.6704036 | 0.441404596 |
Tensile Elongation (mm) | Axial Strain (%) | Single Fiber Diameter (μm) | Transverse Strain (%) |
---|---|---|---|
0 | 0 | 11.31 | 0 |
0.2 | 0.5 | 11.25 | −0.4602938 |
0.4 | 1 | 11.22 | −0.79575 |
0.6 | 1.5 | 11.19 | −1.061 |
0.8 | 2 | 11.12 | −1.680 |
1 | 2.5 | 10.7 | −5.393 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, F.; Fan, X.; Zhang, J.; Du, Z.; Wang, Y.; Qiu, W.; Shi, J.; Zhang, X.; Wang, W.; Wu, Q.; et al. Quantitative Strain Measurements of Kevlar Fibers in Composite Concrete Using Raman Spectroscopy. Photonics 2025, 12, 1013. https://doi.org/10.3390/photonics12101013
Qin F, Fan X, Zhang J, Du Z, Wang Y, Qiu W, Shi J, Zhang X, Wang W, Wu Q, et al. Quantitative Strain Measurements of Kevlar Fibers in Composite Concrete Using Raman Spectroscopy. Photonics. 2025; 12(10):1013. https://doi.org/10.3390/photonics12101013
Chicago/Turabian StyleQin, Fuyong, Xinmin Fan, Jianxin Zhang, Zaifa Du, Yan Wang, Wenjing Qiu, Jiahui Shi, Xiuhua Zhang, Wendi Wang, Qingju Wu, and et al. 2025. "Quantitative Strain Measurements of Kevlar Fibers in Composite Concrete Using Raman Spectroscopy" Photonics 12, no. 10: 1013. https://doi.org/10.3390/photonics12101013
APA StyleQin, F., Fan, X., Zhang, J., Du, Z., Wang, Y., Qiu, W., Shi, J., Zhang, X., Wang, W., Wu, Q., Meng, Y., & Song, F. (2025). Quantitative Strain Measurements of Kevlar Fibers in Composite Concrete Using Raman Spectroscopy. Photonics, 12(10), 1013. https://doi.org/10.3390/photonics12101013