Review of the Fundamental Measurement Modalities in Photoacoustic Mechanical Imaging
Abstract
1. Introduction
2. Applications of Photoacoustic Mechanical Imaging
2.1. Photoacoustic Elasticity Measurement
2.1.1. PA Elastography
2.1.2. PA Remote Sensing Elastography
2.2. Photoacoustic Viscosity Measurement
2.2.1. Frequency-Resolved PA Viscosity Measurement
2.2.2. Phase-Domain PA Viscography
2.3. Photoacoustic Viscoelasticity Imaging
2.3.1. PA Lock-In Viscoelasticity Measurement
2.3.2. PA Microrheology
3. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kruger, R.A. Photoacoustic ultrasound. Med. Phys. 1994, 21, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V.; Wu, H.-I.; Masters, B.R. Biomedical Optics: Principles and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Li, C.; Wang, L.V. Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 2009, 54, R59–R97. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Huang, Q.; Ku, G.; Wen, X.; Zhou, M.; Guzatov, D.; Brecht, P.; Su, R.; Oraevsky, A.; Wang, L.V.; et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 2010, 31, 2617–2626. [Google Scholar] [CrossRef]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus. 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Cox, B.T.; Laufer, J.; Arridge, S.R.; Beard, P.C. Quantitative spectroscopic photoacoustic imaging: A review. J. Biomed. Opt. 2012, 17, 061202. [Google Scholar] [CrossRef] [PubMed]
- Kruger, R.A.; Kuzmiak, C.M.; Lam, R.B.; Reinecke, D.R.; Del Rio, S.P.; Steed, D. Dedicated 3D photoacoustic breast imaging. Med. Phys. 2013, 40, 113301. [Google Scholar] [CrossRef] [PubMed]
- Glatz, T.; Scherzer, O.; Widlak, T. Texture Generation for Photoacoustic Elastography. J. Math. Imaging Vis. 2015, 52, 369–384. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Kang, B.J.; Lee, C.; Kim, H.H.; Park, J.; Zhou, Q.; Shung, K.K. Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics. Biomed. Opt. Express 2015, 6, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Park, E.-Y.; Jeon, S.; Kim, C. Clinical photoacoustic imaging platforms. Biomed. Eng. Lett. 2018, 8, 139–155. [Google Scholar] [CrossRef]
- Attia, A.B.E.; Balasundaram, G.; Moothanchery, M.; Dinish, U.; Bi, R.; Ntziachristos, V.; Olivo, M. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics 2019, 16, 100144. [Google Scholar] [CrossRef]
- Arridge, S.; Beard, P.; Betcke, M.; Cox, B.; Huynh, N.; Lucka, F.; Ogunlade, O.; Zhang, E. Accelerated high-resolution photoacoustic tomography via compressed sensing. Phys. Med. Biol. 2016, 61, 8908–8940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851. [Google Scholar] [CrossRef] [PubMed]
- Kruger, R.A.; Lam, R.B.; Reinecke, D.R.; Del Rio, S.P.; Doyle, R.P. Photoacoustic angiography of the breast. Med. Phys. 2010, 37, 6096–6100. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, T.; Qiu, H.; Gu, Y.; Chen, Q.; Zuo, C.; Ma, H. 4D spectral-spatial computational photoacoustic dermoscopy. Photoacoustics 2023, 34, 100572. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tung, C.-H.; Mahmood, U.; Ntziachristos, V.; Gyurko, R.; Fishman, M.C.; Huang, P.L.; Weissleder, R. In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002, 105, 2766–2771. [Google Scholar] [CrossRef]
- Brecht, H.-P.F.; Su, R.; Fronheiser, M.P.; Ermilov, S.A.; Conjusteau, A.; Oraevsky, A.A. Whole-body three-dimensional optoacoustic tomography system for small animals. J. Biomed. Opt. 2009, 14, 064007. [Google Scholar] [CrossRef] [PubMed]
- Ermilov, S.A.; Khamapirad, T.; Conjusteau, A.; Leonard, M.H.; Lacewell, R.; Mehta, K.; Miller, T.; Oraevsky, A. Laser optoacoustic imaging system for detection of breast cancer. J. Biomed. Opt. 2009, 14, 024007. [Google Scholar] [CrossRef]
- Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 2010, 7, 603–614. [Google Scholar] [CrossRef]
- Schultz, K.M.; Furst, E.M. Microrheology of biomaterial hydrogelators. Soft Matter 2012, 8, 6198–6205. [Google Scholar] [CrossRef]
- Wang, L.V.; Hu, S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef]
- Xi, L.; Jiang, H. High resolution three-dimensional photoacoustic imaging of human finger joints in vivo. Appl. Phys. Lett. 2015, 107, 063701. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, C.; Yang, S.; Xing, D. Mechanical evaluation of lipid accumulation in atherosclerotic tissues by photoacoustic viscoelasticity imaging. Opt. Lett. 2016, 41, 4522–4525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liang, D.; Wang, Y.; Li, D.; Zhang, J.; Wu, L.; Feng, M.; Yi, F.; Xu, L.; Lei, L.; et al. Caged circular siRNAs for photomodulation of gene expression in cells and mice. Chem. Sci. 2018, 9, 44–51. [Google Scholar] [CrossRef]
- Oraevsky, A.; Clingman, B.; Zalev, J.; Stavros, A.; Yang, W.; Parikh, J. Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors. Photoacoustics 2018, 12, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Hu, P.; Shi, J.; Appleton, C.M.; Maslov, K.; Li, L.; Zhang, R.; Wang, L.V. Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun. 2018, 9, 2352. [Google Scholar] [CrossRef]
- Zhang, H.F.; Maslov, K.; Sivaramakrishnan, M.; Stoica, G.; Wang, L.V. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett. 2007, 90, 053901. [Google Scholar] [CrossRef]
- Wang, L.V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 2009, 3, 503–509. [Google Scholar] [CrossRef]
- Zhang, E.Z.; Laufer, J.G.; Pedley, R.B.; Beard, P.C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 2009, 54, 1035–1046. [Google Scholar] [CrossRef]
- Shi, Y.; Qin, H.; Yang, S.; Xing, D. Thermally confined shell coating amplifies the photoacoustic conversion efficiency of nanoprobes. Nano Res. 2016, 9, 3644–3655. [Google Scholar] [CrossRef]
- Deán-Ben, X.L.; Gottschalk, S.; Mc Larney, B.; Shoham, S.; Razansky, D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem. Soc. Rev. 2017, 46, 2158–2198. [Google Scholar] [CrossRef]
- Zheng, E.; Zhang, H.; Goswami, S.; Kabir, I.E.; Doyley, M.M.; Xia, J. Second-generation dual scan Mammoscope with photoacoustic, ultrasound, and elastographic imaging capabilities. Front. Oncol. 2021, 11, 779071. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Z. Nonlinear photoacoustic imaging dedicated to thermal-nonlinearity characterization. Chin. Opt. Lett. 2021, 19, 071702. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, S.; Wang, Y.; Xing, D. Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer. Appl. Phys. Lett. 2015, 106, 043701. [Google Scholar] [CrossRef]
- Gao, G.; Yang, S.; Xing, D. Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement. Opt. Lett. 2011, 36, 3341. [Google Scholar] [CrossRef]
- Lum, J.S.; Stobbe, D.M.; Borden, M.A.; Murray, T.W. Photoacoustic technique to measure temperature effects on microbubble viscoelastic properties. Appl. Phys. Lett. 2018, 112, 111905. [Google Scholar] [CrossRef]
- Wijesinghe, P.; Kennedy, B.F.; Sampson, D.D. Optical elastography on the microscale. In Tissue Elasticity Imaging; Elsevier: Amsterdam, The Netherlands, 2020; pp. 185–229. [Google Scholar]
- Yang, D.; Chen, Z.; Xing, D. A novel needle probe for deeper photoacoustic viscoelasticity measurement. Chin. Opt. Lett. 2022, 20, 081701. [Google Scholar] [CrossRef]
- Hai, P.; Zhou, Y.; Gong, L.; Wang, L.V. Quantitative photoacoustic elastography of Young’s modulus in humans. In Photons Plus Ultrasound: Imaging and Sensing; SPIE: San Jose, CA, USA, 2017; Volume 10064, pp. 34–41. [Google Scholar] [CrossRef]
- Singh, M.S.; Thomas, A. Photoacoustic elastography imaging: A review. J. Biomed. Opt. 2019, 24, 040902. [Google Scholar] [CrossRef]
- Hai, P.; Yao, J.; Li, G.; Li, C.; Wang, L.V. Photoacoustic elastography. Opt. Lett. 2016, 41, 725. [Google Scholar] [CrossRef] [PubMed]
- Hai, P.; Zhou, Y.; Gong, L.; Wang, L.V. Quantitative photoacoustic elastography in humans. J. Biomed. Opt. 2016, 21, 066011. [Google Scholar] [CrossRef]
- Yuan, Y.; Wen, X.; Yuan, B.; Xin, H.; Fang, B.; Yang, S.; Xiong, K. Photoacoustic remote sensing elastography. Opt. Lett. 2023, 48, 2321–2324. [Google Scholar] [CrossRef] [PubMed]
- Gorey, A.; Das, R.; Bhaumik, C.; Chakravarty, T.; Pal, A. Photoacoustic sensing system for noninvasive and real-time measurement of paint’s viscosity in flowing conditions. IEEE Sens. Lett. 2024, 8, 3503604. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, S.; Wang, Y.; Yuan, Z.; Qu, J.; Liu, L. In vivo blood viscosity characterization based on frequency-resolved photoacoustic measurement. Appl. Phys. Lett. 2018, 113, 143703. [Google Scholar] [CrossRef]
- Lou, C.; Xing, D. Photoacoustic measurement of liquid viscosity. Appl. Phys. Lett. 2010, 96, 211102. [Google Scholar] [CrossRef]
- Lou, C.; Dai, J.; Wang, Y.; Zhang, Y.; Li, Y.; Liu, X.; Ma, Y. Highly sensitive light-induced thermoelastic spectroscopy oxygen sensor with co-coupling photoelectric and thermoelastic effect of quartz tuning fork. Photoacoustics 2023, 31, 100515. [Google Scholar] [CrossRef]
- Esenaliev, R.; Karabutov, A.; Oraevsky, A. Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 981–988. [Google Scholar] [CrossRef]
- Ntziachristos, V.; Bremer, C.; Weissleder, R. Fluorescence imaging with near-infrared light: New technological advances that enable in vivo molecular imaging. Eur. Radiol. 2003, 13, 195–208. [Google Scholar] [CrossRef]
- Copland, J.A.; Eghtedari, M.; Popov, V.L.; Kotov, N.; Mamedova, N.; Motamedi, M.; Oraevsky, A.A. Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography. Mol. Imaging Biol. 2004, 6, 341–349. [Google Scholar] [CrossRef]
- Maslov, K.; Zhang, H.F.; Hu, S.; Wang, L.V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 2008, 33, 929. [Google Scholar] [CrossRef] [PubMed]
- Razansky, D.; Distel, M.; Vinegoni, C.; Ma, R.; Perrimon, N.; Köster, R.W.; Ntziachristos, V. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics 2009, 3, 412–417. [Google Scholar] [CrossRef]
- Razansky, D.; Buehler, A.; Ntziachristos, V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat. Protoc. 2011, 6, 1121–1129. [Google Scholar] [CrossRef]
- Qin, H.; Zhou, T.; Yang, S.; Xing, D. Fluorescence quenching nanoprobes dedicated to in vivo photoacoustic imaging and high-efficient tumor therapy in deep-seated tissue. Small 2015, 11, 2675–2686. [Google Scholar] [CrossRef]
- Taruttis, A.; Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 2015, 9, 219–227. [Google Scholar] [CrossRef]
- Yang, F.; Chen, Z.; Wang, P.; Shi, Y. Phase-domain photoacoustic mechanical imaging for quantitative elastography and viscography. IEEE Trans. Biomed. Eng. 2024, 71, 2330–2340. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, C.; Liu, H.; Yang, S.; Xing, D. Time-resolved photoacoustic measurement for evaluation of viscoelastic properties of biological tissues. Appl. Phys. Lett. 2016, 109, 203702. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, S. Photoacoustic viscoelasticity imaging of biological tissues with intensity-modulated continuous-wave laser. J. Innov. Opt. Health Sci. 2013, 6, 1350033. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, S.; Chen, C.; Xing, D. Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement. Opt. Lett. 2014, 39, 2565–2568. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.T.; Laufer, J.G.; Beard, P.C. The Challenges for Quantitative Photoacoustic Imaging; Oraevsky, A.A., Wang, L.V., Eds.; SPIE: San Jose, CA, USA, 2009. [Google Scholar]
- Ermilov, S.A.; Su, R.; Conjusteau, A.; Anis, F.; Nadvoretskiy, V.; Anastasio, M.A.; Oraevsky, A.A. Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: Design and phantom validation. Ultrason. Imaging 2016, 38, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shi, Y.; Yang, F.; Yang, S. Quantitative photoacoustic elasticity and viscosity imaging for cirrhosis detection. Appl. Phys. Lett. 2018, 112, 211902. [Google Scholar] [CrossRef]
- Samant, P.; Trevisi, L.; Ji, X.; Xiang, L. X-ray induced acoustic computed tomography. Photoacoustics 2020, 19, 100177. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Chen, Z.; Xing, D. Single-Cell Photoacoustic Microrheology. IEEE Trans. Med. Imaging 2020, 39, 1791–1800. [Google Scholar] [CrossRef]
- Graves, E.E.; Ripoll, J.; Weissleder, R.; Ntziachristos, V. A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med. Phys. 2003, 30, 901–911. [Google Scholar] [CrossRef]
- Kim, C.; Favazza, C.; Wang, L.V. In vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths. Chem. Rev. 2010, 110, 2756–2782. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Ding, W.; Ye, F.; Lou, C.; Xing, D. Shape-adapting thermoacoustic imaging system based on flexible multi-element transducer. Appl. Phys. Lett. 2015, 107, 094104. [Google Scholar] [CrossRef]
- Ding, W.; Ji, Z.; Xing, D. Microwave-excited ultrasound and thermoacoustic dual imaging. Appl. Phys. Lett. 2017, 110, 183701. [Google Scholar] [CrossRef]
- Ding, W.; Ji, Z.; Liu, C.; Duan, R. Sensing non-light-absorbing media via thermally modulated photoacoustic measurements. Appl. Phys. Lett. 2021, 118, 023701. [Google Scholar] [CrossRef]
Summary of Many Key Features of Photoacoustic Mechanical Imaging Modalities | |||
---|---|---|---|
Technology | Measurement | Mechanism | Lateral Resolution |
PA elastography | Elasticity | Strain | 119 μm |
PA remote sensing elastography | Elasticity | Rise time (Thermoelastic displacement) | 10.36 μm |
Frequency-resolved PA viscosity measurement | Viscosity | FWHM (Frequency spectrum) | NA |
Phase-domain PA viscography | Viscosity | Phase delay | 9.7 μm |
PA lock-in viscoelasticity measurement | Viscoelasticity ratio | Phase delay | 100 μm |
PA Microrheology | Elasticity & Viscosity | Rise time & Phase delay | 38.5 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Sun, J.; Yuan, H.; Li, L.; Zhang, H.; Zhao, Y. Review of the Fundamental Measurement Modalities in Photoacoustic Mechanical Imaging. Photonics 2025, 12, 90. https://doi.org/10.3390/photonics12010090
Shi X, Sun J, Yuan H, Li L, Zhang H, Zhao Y. Review of the Fundamental Measurement Modalities in Photoacoustic Mechanical Imaging. Photonics. 2025; 12(1):90. https://doi.org/10.3390/photonics12010090
Chicago/Turabian StyleShi, Xiaohan, Jianqin Sun, Hua Yuan, Liming Li, Haiyang Zhang, and Yue Zhao. 2025. "Review of the Fundamental Measurement Modalities in Photoacoustic Mechanical Imaging" Photonics 12, no. 1: 90. https://doi.org/10.3390/photonics12010090
APA StyleShi, X., Sun, J., Yuan, H., Li, L., Zhang, H., & Zhao, Y. (2025). Review of the Fundamental Measurement Modalities in Photoacoustic Mechanical Imaging. Photonics, 12(1), 90. https://doi.org/10.3390/photonics12010090