Snapshot Imaging of Stokes Vector Polarization Speckle in Turbid Optical Phantoms and In Vivo Tissues
Abstract
:1. Introduction
2. Background
2.1. Speckle Contrast and Size
2.2. Polarization State and Degree of Polarization
3. Methods—System Design
3.1. Speckle Size Considerations
3.2. Polarimetric Scheme
3.3. Polarimetric Calibration and Error Evaluation
3.4. Image Formation
4. System Demonstration
4.1. Experimental Materials and Methods
4.2. Results and Discussion
5. Summary, Discussion, and Conclusions
5.1. System Limitations
5.2. Future Work
5.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tchvialeva, L.; Dhadwal, G.; Lui, H.; Kalia, S.; Zeng, H.; McLean, D.I.; Lee, T.K. Polarization speckle imaging as a potential technique for in vivo skin cancer detection. J. Biomed. Opt. 2012, 18, 061211. [Google Scholar] [CrossRef] [PubMed]
- Héran, D.; Ryckewaert, M.; Abautret, Y.; Zerrad, M.; Amra, C.; Bendoula, R. Combining light polarization and speckle measurements with multivariate analysis to predict bulk optical properties of turbid media. Appl. Opt. 2019, 58, 8247–8256. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Louie, D.C.; Cai, J.; Tchvialeva, L.; Lui, H.; Wang, Z.J.; Lee, T.K. Deep learning enhances polarization speckle for in vivo skin cancer detection. Opt. Laser Technol. 2021, 140, 107006. [Google Scholar] [CrossRef]
- Loutfi, H.; Pellen, F.; Le Jeune, B.; Le Brun, G.; Abboud, M. Polarized laser speckle images produced by calibrated polystyrene microspheres suspensions: Comparison between backscattering and transmission experimental configurations. Laser Phys. 2023, 33, 086001. [Google Scholar] [CrossRef]
- Li, J.; Yao, G.; Wang, L.V. Degree of polarization in laser speckles from turbid media: Implications in tissue optics. J. Biomed. Opt. 2002, 7, 307–312. [Google Scholar] [CrossRef]
- Louie, D.C.; Phillips, J.; Tchvialeva, L.; Kalia, S.; Lui, H.; Wang, W.; Lee, T.K. Degree of optical polarization as a tool for detecting melanoma: Proof of principle. J. Biomed. Opt. 2018, 23, 125004. [Google Scholar] [CrossRef]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications, 2nd ed.; SPIE: Bellingham, WA, USA, 2020; pp. 129–136. [Google Scholar]
- Goodman, J.W. Some fundamental properties of speckle. J. Opt. Soc. Am. 1976, 66, 1145–1150. [Google Scholar] [CrossRef]
- Steeger, P.F.; Asakura, T.; Zocha, K.; Fercher, A.F. Statistics of the Stokes parameters in speckle fields. J. Opt. Soc. Am. A 1984, 1, 677–682. [Google Scholar] [CrossRef]
- Barakat, R. The statistical properties of partially polarized light. Opt. Acta. 1985, 32, 295–312. [Google Scholar] [CrossRef]
- Steeger, P.F.; Fercher, A.F. Experimental investigation of the first-order statistics of Stokes parameters in speckle fields. Opt. Acta 1982, 29, 1395–1400. [Google Scholar] [CrossRef]
- Tarhan, İ.İ.; Watson, G.H. Polarization microstatistics of laser speckle. Phys. Rev. A 1992, 45, 6013. [Google Scholar] [CrossRef]
- Wang, W.; Hanson, S.G.; Takeda, M. Statistics of polarization speckle: Theory versus experiment. In Ninth International Conference on Correlation Optics; SPIE: Chernivtsi, Ukraine, 2009. [Google Scholar]
- Dupont, J.; Orlik, X.; Ghabbach, A.; Zerrad, M.; Soriano, G.; Amra, C. Polarization analysis of speckle field below its transverse correlation width: Application to surface and bulk scattering. Opt. Express 2014, 22, 24133–24141. [Google Scholar] [CrossRef]
- Gabbach, A.; Zerrad, M.; Soriano, G.; Amra, C. Accurate metrology of polarization curves measured at the speckle size of visible light scattering. Opt. Express 2014, 22, 14594–14609. [Google Scholar] [CrossRef]
- Sorrentini, J.; Zerrad, M.; Amra, C. Statistical signatures of random media and their correlation to polarization properties. Opt. Lett. 2009, 34, 2429–2431. [Google Scholar] [CrossRef]
- Li, P.; Dong, Y.; Wan, J.; He, H.; Aziz, T.; Ma, H. Polaromics: Deriving polarization parameters from a Mueller matrix for quantitative characterization of biomedical specimen. J. Phys. D Appl. Phys. 2021, 55, 034002. [Google Scholar] [CrossRef]
- Valent, E.; Silberberg, Y. Scatterer recognition via analysis of speckle patterns. Optica 2018, 5, 204–207. [Google Scholar] [CrossRef]
- Boas, D.A.; Dunn, A.K. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 2010, 15, 011109. [Google Scholar] [CrossRef]
- Colin, E.; Plyer, A.; Golzio, M.; Meyer, N.; Favre, G.; Orlik, X. Imaging of the skin microvascularization using spatially depolarized dynamic speckle. J. Biomed. Opt. 2022, 27, 046003. [Google Scholar] [CrossRef]
- Abbasian, V.; Rad, V.F.; Shamshiripour, P.; Ahmadvand, D.; Darafsheh, A. Polarization-driven dynamic laser speckle analysis for brain neoplasms differentiation. Light Adv. Manuf. 2024, 5, 43. [Google Scholar] [CrossRef]
- Shao, M.; Xu, D.; Li, S.; Zuo, X.; Chen, C.; Peng, G.; Zhang, J.; Wang, X.; Yang, Q. A review of surface roughness measurements based on laser speckle method. J. Iron Steel Red. Int. 2023, 30, 1897–1915. [Google Scholar] [CrossRef]
- Castilho, V.M.; Blathazar, W.F.; da Silva, L.; Penna, T.J.P.; Huguenin, J.A.O. Machine learning classification of speckle patterns for roughness measurements. Phys. Lett. A 2023, 468, 128736. [Google Scholar] [CrossRef]
- Piederrière, Y.; Cariou, J.; Guern, Y.; Le Jeune, B.; Le Brun, G.; Lotrian, J. Scattering through fluids: Speckle size measurement and Monte Carlo simulations close to and into the multiple scattering. Opt. Express 2004, 13, 5030–5039. [Google Scholar] [CrossRef]
- Fischer, A. Capabilities and limits of surface roughness measurements with monochromatic speckles. Appl. Opt. 2023, 62, 3724–3736. [Google Scholar] [CrossRef]
- Thompson, C.A.; Webb, K.J.; Weiner, A.M. Imaging in scattering media by use of laser speckle. J. Opt. Soc. Am. 1997, 14, 2269–2277. [Google Scholar] [CrossRef]
- Li, Q.B.; Chiang, F.P. Three-dimensional dimension of laser speckle. Appl. Opt. 1992, 31, 6287–6291. [Google Scholar] [CrossRef]
- Collett, E. Field Guide to Polarization; SPIE: Bellingham, WA, USA, 2005. [Google Scholar]
- Kunnen, B.; Macdonald, C.; Doronin, A.; Jacques, S.; Eccles, M.; Meglinski, I. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J. Biophotonics 2015, 8, 317–323. [Google Scholar] [CrossRef]
- Singh, M.D.; Vitkin, A. Discriminating turbid media by scatterer size and scattering coefficient using backscattered linearly and circularly polarized light. Biomed. Opt. Express 2021, 12, 6831–6843. [Google Scholar] [CrossRef]
- He, C.; He, H.; Chang, J.; Chen, B.; Ma, H.; Booth, M.J. Polarisation optics for biomedical and clinical applications: A review. Light Sci. Appl. 2021, 10, 194. [Google Scholar] [CrossRef]
- Aiello, A.; Woerdman, J.P. Role of spatial coherence in polarization tomography. Opt. Lett. 2005, 30, 1599–1601. [Google Scholar] [CrossRef]
- Deng, Y.; Chu, D. Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays. Sci. Rep. 2017, 7, 5893. [Google Scholar] [CrossRef]
- Tchvialeva, L.; Markhvida, I.; Lee, T.K. Error analysis for polychromatic speckle contrast measurements. Opt. Lasers Eng. 2011, 49, 1397–1400. [Google Scholar] [CrossRef]
- Gatti, A.; Magatti, D.; Ferri, F. Three-dimensional coherence of light speckles: Theory. Phys. Rev. A 2008, 78, 1–11. [Google Scholar] [CrossRef]
- Twietmeyer, K.M.; Chipman, R.A. Optimization of Mueller matrix polarimeters in the presence of error sources. Opt. Express 2008, 16, 11589–11603. [Google Scholar] [CrossRef]
- Tyo, J.S. Design of optimal polarimeters: Maximization of signal-to-noise ratio and minimization of systematic error. Appl. Opt. 2002, 41, 619–630. [Google Scholar] [CrossRef]
- Compain, E.; Poirier, S.; Drevillon, B. General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers. Appl. Opt. 1999, 38, 3490–3502. [Google Scholar] [CrossRef]
- Savenkov, S.N.; Oberemok, Y.A.; Klimov, O.S.; Barchuk, O.I. Effect of the structure of polarimeter characteristic matrix on light polarization measurements. SPQEO 2009, 12, 264–271. [Google Scholar] [CrossRef]
- Foreman, M.R.; Goudail, F. On the equivalence of optimization metrics in Stokes polarimetry. Opt. Eng. 2019, 58, 082410. [Google Scholar] [CrossRef]
- Bruce, N.C.; López-Téllez, J.M.; Rodríguez-Núñez, O.; Rodríguez-Herrera, O.G. Permitted experimental errors for optimized variable-retarder Mueller-matrix polarimeters. Opt. Express 2018, 26, 13693–13704. [Google Scholar] [CrossRef]
- Zabel, W.J.; Allam, N.; Sanchez, H.A.C.; Foltz, W.; Flueraru, C.; Taylor, E.; Vitkin, A. A dorsal skinfold window chamber tumor mouse model for combined intravital microscopy and magnetic resonance imaging in translational cancer research. J. Vis. Exp. 2024, 12, e66383. [Google Scholar] [CrossRef]
- van der Laan, J.D.; Wright, J.B.; Scrymgeour, D.A.; Kemme, S.A.; Dereniak, E.L. Evolution of circular and linear polarization in scattering environments. Opt. Express 2015, 23, 31874–31888. [Google Scholar] [CrossRef]
- Louie, D.C.; Tchvialeva, L.; Kalia, S.; Lui, H.; Lee, T.K. Polarization memory rate as a metric to differentiate benign and malignant tissues. Biomed. Opt. Express 2022, 13, 620–632. [Google Scholar] [CrossRef]
- Tu, X.; Spires, O.J.; Tian, X.; Brock, N.; Liang, R.; Pau, S. Division of amplitude RGB full-Stokes camera using micro-polarizer arrays. Opt. Express 2017, 25, 33160–33175. [Google Scholar] [CrossRef]
- Baek, N.; Lee, Y.; Kim, T.; Jung, J.; Lee, S.A. Lensless polarization camera for single-shot full-Stokes imaging. APL Photonics 2022, 7, 116107. [Google Scholar] [CrossRef]
- Zaidi, A.; Rubin, N.A.; Meretska, M.L.; Li, L.W.; Dorrah, A.H.; Park, J.-S.; Capasso, F. Metasurface-enabled single-shot and complete Mueller matrix imaging. Nat. Photonics 2024, 18, 704–712. [Google Scholar] [CrossRef]
- Stansberg, C.T. Surface roughness measurements by means of polychromatic speckle patterns. Appl. Opt. 1979, 18, 4051–4062. [Google Scholar] [CrossRef]
DOPpx | DOPsp | Speckle Contrast | Speckle Size (µm) | ||
---|---|---|---|---|---|
Metal (Figure 3) | 0.97 | 0.95 | 0.93 | 190 | |
Phantoms (Figure 4) | (A) 1.07 µm, µs = 100 cm−1 | 0.91 | 0.27 | 0.72 | 23 |
(B) 1.07 µm, µs = 300 cm−1 | 0.88 | 0.20 | 0.67 | 38 | |
(C) 0.58 µm, µs = 100 cm−1 | 0.86 | 0.14 | 0.63 | 38 | |
(D) 0.58 µm, µs = 300 cm−1 | 0.81 | 0.13 | 0.59 | 70 | |
Mouse (Figure 5) | (A) Healthy | 0.73 | 0.06 | 0.55 | 102 |
(B) Tumor | 0.82 | 0.11 | 0.58 | 71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Louie, D.C.; Kulcsar, C.; Contreras-Sánchez, H.A.; Zabel, W.J.; Lee, T.K.; Vitkin, A. Snapshot Imaging of Stokes Vector Polarization Speckle in Turbid Optical Phantoms and In Vivo Tissues. Photonics 2025, 12, 59. https://doi.org/10.3390/photonics12010059
Louie DC, Kulcsar C, Contreras-Sánchez HA, Zabel WJ, Lee TK, Vitkin A. Snapshot Imaging of Stokes Vector Polarization Speckle in Turbid Optical Phantoms and In Vivo Tissues. Photonics. 2025; 12(1):59. https://doi.org/10.3390/photonics12010059
Chicago/Turabian StyleLouie, Daniel C., Carla Kulcsar, Héctor A. Contreras-Sánchez, W. Jeffrey Zabel, Tim K. Lee, and Alex Vitkin. 2025. "Snapshot Imaging of Stokes Vector Polarization Speckle in Turbid Optical Phantoms and In Vivo Tissues" Photonics 12, no. 1: 59. https://doi.org/10.3390/photonics12010059
APA StyleLouie, D. C., Kulcsar, C., Contreras-Sánchez, H. A., Zabel, W. J., Lee, T. K., & Vitkin, A. (2025). Snapshot Imaging of Stokes Vector Polarization Speckle in Turbid Optical Phantoms and In Vivo Tissues. Photonics, 12(1), 59. https://doi.org/10.3390/photonics12010059