Hunting for Monolayer Black Phosphorus with Photoluminescence Microscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jones, A.M.; Seyler, K.L.; Tran, V.; Jia, Y.; Zhao, H.; Wang, H.; Yang, L.; Xu, X.; Xia, F. Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus. Nat. Nanotechnol. 2015, 10, 517–521. [Google Scholar] [CrossRef]
- Lee, S.; Yang, F.; Suh, J.; Yang, S.; Lee, Y.; Li, G.; Sung Choe, H.; Suslu, A.; Chen, Y.; Ko, C.; et al. Anisotropic In-Plane Thermal Conductivity of Black Phosphorus Nanoribbons at Temperatures Higher than 100 K. Nat. Commun. 2015, 6, 8573. [Google Scholar] [CrossRef]
- Huang, S.; Wang, C.; Xie, Y.; Yu, B.; Yan, H. Optical Properties and Polaritons of Low Symmetry 2D Materials. Photonics Insights 2023, 2, R03. [Google Scholar] [CrossRef]
- Kim, J.; Baik, S.S.; Ryu, S.H.; Sohn, Y.; Park, S.; Park, B.-G.; Denlinger, J.; Yi, Y.; Choi, H.J.; Kim, K.S. Observation of Tunable Band Gap and Anisotropic Dirac Semimetal State in Black Phosphorus. Science 2015, 349, 723–726. [Google Scholar] [CrossRef]
- Li, L. Direct Observation of the Layer-Dependent Electronic Structure in Phosphorene. Nat. Nanotechnol. 2017, 12, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, G.; Fan, F.; Song, C.; Wang, F.; Xing, Q.; Wang, C.; Wu, H.; Yan, H. Strain-Tunable van Der Waals Interactions in Few-Layer Black Phosphorus. Nat. Commun. 2019, 10, 2447. [Google Scholar] [CrossRef]
- Huang, S.; Lu, Y.; Wang, F.; Lei, Y.; Song, C.; Zhang, J.; Xing, Q.; Wang, C.; Xie, Y.; Mu, L.; et al. Layer-Dependent Pressure Effect on the Electronic Structure of 2D Black Phosphorus. Phys. Rev. Lett. 2021, 127, 186401. [Google Scholar] [CrossRef]
- Huang, S.; Wang, F.; Zhang, G.; Song, C.; Lei, Y.; Xing, Q.; Wang, C.; Zhang, Y.; Zhang, J.; Xie, Y.; et al. From Anomalous to Normal: Temperature Dependence of the Band Gap in Two-Dimensional Black Phosphorus. Phys. Rev. Lett. 2020, 125, 156802. [Google Scholar] [CrossRef]
- Lei, Y.; Ma, J.; Luo, J.; Huang, S.; Yu, B.; Song, C.; Xing, Q.; Wang, F.; Xie, Y.; Zhang, J.; et al. Layer-Dependent Exciton Polarizability and the Brightening of Dark Excitons in Few-Layer Black Phosphorus. Nat. Commun. 2023, 14, 5314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Huang, S.; Wang, F.; Yan, H. Layer-Dependent Electronic and Optical Properties of 2D Black Phosphorus: Fundamentals and Engineering. Laser Photonics Rev. 2021, 15, 2000399. [Google Scholar] [CrossRef]
- Li, W.; Tao, Q.; Li, Z.; Yang, G.; Lu, Z.; Chen, Y.; Wen, Y.; Wang, Y.; Liao, L.; Liu, Y.; et al. Monolayer Black Phosphorus and Germanium Arsenide Transistors via van Der Waals Channel Thinning. Nat. Electron. 2023, 7, 131–137. [Google Scholar] [CrossRef]
- Huang, M.; Wang, M.; Chen, C.; Ma, Z.; Li, X.; Han, J.; Wu, Y. Broadband Black-Phosphorus Photodetectors with High Responsivity. Adv. Mater. 2016, 28, 3481–3485. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhou, Y.; Wang, J.; Shao, Y.; Kong, D.; Gao, Y.; Wang, Y. The Pump Fluence and Wavelength-Dependent Ultrafast Carrier Dynamics and Optical Nonlinear Absorption in Black Phosphorus Nanosheets. Nanophotonics 2020, 9, 2033–2043. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H.; Sun, Z.; Wang, J.; Zhou, C.; Wang, Y.; Guo, X.; et al. Black Phosphorus Based Photocathodes in Wideband Bifacial Dye-Sensitized Solar Cells. Adv. Mater. 2016, 28, 8937–8944. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Hu, H.; Ouyang, G.; Wang, J.; Shi, R.; Zhang, L.; Zeng, Q.; Zhu, C.; Chen, S.; Cheng, C.; et al. Black Phosphorus-Based van Der Waals Heterostructures for Mid-Infrared Light-Emission Applications. Light Sci. Appl. 2020, 9, 114. [Google Scholar] [CrossRef]
- Higashitarumizu, N.; Tajima, S.; Kim, J.; Cai, M.; Javey, A. Long Operating Lifetime Mid-Infrared LEDs Based on Black Phosphorus. Nat. Commun. 2023, 14, 4845. [Google Scholar] [CrossRef]
- Kou, L.; Frauenheim, T.; Chen, C. Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I−V Response. J. Phys. Chem. Lett. 2014, 5, 2675–2681. [Google Scholar] [CrossRef]
- Rodin, A.S.; Carvalho, A.; Neto, A.H.C. Excitons in Anisotropic Two-Dimensional Semiconducting Crystals. Phys. Rev. B 2014, 90, 075429. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, S.; Wang, F.; Yang, J.; Wang, Z.; Pei, J.; Myint, Y.W.; Xing, B.; Yu, Z.; Fu, L.; et al. Extraordinarily Bound Quasi-One-Dimensional Trions in Two-Dimensional Phosphorene Atomic Semiconductors. ACS Nano 2016, 10, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, C.; Chaves, A.; Song, C.; Zhang, G.; Huang, S.; Lei, Y.; Xing, Q.; Mu, L.; Xie, Y.; et al. Prediction of Hyperbolic Exciton-Polaritons in Monolayer Black Phosphorus. Nat. Commun. 2021, 12, 5628. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, R.; Pei, J.; Myint, Y.W.; Wang, F.; Wang, Z.; Zhang, S.; Yu, Z.; Lu, Y. Optical Tuning of Exciton and Trion Emissions in Monolayer Phosphorene. Light Sci. Appl. 2015, 4, e312. [Google Scholar] [CrossRef]
- Nemilentsau, A.; Low, T.; Hanson, G. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics. Phys. Rev. Lett. 2016, 116, 066804. [Google Scholar] [CrossRef]
- Biswas, S.; Wong, J.; Pokawanvit, S.; Yang, W.-C.D.; Zhang, H.; Akbari, H.; Watanabe, K.; Taniguchi, T.; Davydov, A.V. Edge-Confined Excitons in Monolayer Black Phosphorus. ACS Nano 2023, 17, 23692–23701. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, X.; Lu, G. Pseudo-Heterostructure and Condensation of 1D Moiré Excitons in Twisted Phosphorene Bilayers. Sci. Adv. 2023, 9, eadi5404. [Google Scholar] [CrossRef]
- Soltero, I.; Guerrero-Sánchez, J.; Mireles, F.; Ruiz-Tijerina, D.A. Moiré Band Structures of Twisted Phosphorene Bilayers. Phys. Rev. B 2022, 105, 235421. [Google Scholar] [CrossRef]
- Pan, D.; Wang, T.-C.; Xiao, W.; Hu, D.; Yao, Y. Simulations of Twisted Bilayer Orthorhombic Black Phosphorus. Phys. Rev. B 2017, 96, 041411. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, E.; Üzer, E.A.; Guo, S.; Qi, R.; Tan, J.; Watanabe, K.; Taniguchi, T.; Nilges, T.; Gao, P.; et al. Anisotropic Moiré Optical Transitions in Twisted Monolayer/Bilayer Phosphorene Heterostructures. Nat. Commun. 2021, 12, 3947. [Google Scholar] [CrossRef]
- Kang, P.; Zhang, W.-T.; Michaud-Rioux, V.; Kong, X.-H.; Hu, C.; Yu, G.-H.; Guo, H. Moiré Impurities in Twisted Bilayer Black Phosphorus: Effects on the Carrier Mobility. Phys. Rev. B 2017, 96, 195406. [Google Scholar] [CrossRef]
- Cao, T.; Li, Z.; Qiu, D.Y.; Louie, S.G. Gate Switchable Transport and Optical Anisotropy in 90° Twisted Bilayer Black Phosphorus. Nano Lett 2016, 16, 5542–5546. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, H.; Lu, S.; Wang, Z.; Tang, S.; Shao, J.; Sun, Z.; Xie, H.; Wang, H.; Yu, X.-F.; et al. From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics. Adv. Funct. Mater. 2015, 25, 6996–7002. [Google Scholar] [CrossRef]
- Erande, M.B.; Pawar, M.S.; Late, D.J. Humidity Sensing and Photodetection Behavior of Electrochemically Exfoliated Atomically Thin-Layered Black Phosphorus Nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11548–11556. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.B. Growth of 2D Black Phosphorus Film from Chemical Vapor Deposition. Nanotechnology 2016, 27, 215602. [Google Scholar] [CrossRef]
- Jia, J.; Jang, S.K.; Lai, S.; Xu, J.; Choi, Y.J.; Park, J.-H.; Lee, S. Plasma-Treated Thickness-Controlled Two-Dimensional Black Phosphorus and Its Electronic Transport Properties. ACS Nano 2015, 9, 8729–8736. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Ono, L.K.; Qi, Y.; Oughaddou, H. Recent Advances in Phosphorene: Structure, Synthesis, and Properties. Small 2024, 20, 202303115. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, S.; Guo, Y.; Wang, Q. Photocarrier Dynamics in Monolayer Phosphoreneand Bulk Black Phosphorus. Nanoscale 2016, 8, 233–242. [Google Scholar] [CrossRef]
- Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L’Heureux, A.-L.; Tang, N.Y.-W.; Lévesque, P.L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat. Mater. 2015, 14, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Wang, F. Electronic Structures of Air-Exposed Few-Layer Black Phosphorus by Optical Spectroscopy. Phys. Rev. B 2019, 99, 075427. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q.; Zhang, H. Rapid and Reliable Thickness Identification of Two-Dimensional Nanosheets Using Optical Microscopy. ACS Nano 2013, 7, 10344–10353. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Z.; Han, H.; Ling, H.; Zhang, X.; Wang, Y.; Wang, Q.; Li, H.; Zhang, Y.; Zhang, J.; et al. A Universal Approach to Determine the Atomic Layer Numbers in Two-Dimensional Materials Using Dark-Field Optical Contrast. Nano Lett. 2023, 23, 9170–9177. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Fei, R.; Hu, S.; Li, T.; Zheng, B.; Shi, Y.; Zhao, J.; Zhang, L.; Gan, X.; Wang, X. Observation of Excitonic Series in Monolayer and Few-Layer Black Phosphorus. Phys. Rev. B 2020, 101, 235407. [Google Scholar] [CrossRef]
- Rubio-Bollinger, G.; Guerrero, R.; De Lara, D.; Quereda, J.; Vaquero-Garzon, L.; Agraït, N.; Bratschitsch, R.; Castellanos-Gomez, A. Enhanced Visibility of MoS2, MoSe2, WSe2 and Black-Phosphorus: Making Optical Identification of 2D Semiconductors Easier. Electronics 2015, 4, 847–856. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J.O.; Narasimha-Acharya, K.L.; Blanter, S.I.; Groenendijk, D.J.; Buscema, M.; Steele, G.A.; Alvarez, J.V.; et al. Isolation and Characterization of Few-Layer Black Phosphorus. 2D Mater. 2014, 1, 025001. [Google Scholar] [CrossRef]
- Alexeev, E.M.; Catanzaro, A.; Skrypka, O.V.; Nayak, P.K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J.I.; Novoselov, K.S.; Shin, H.S.; et al. Imaging of Interlayer Coupling in van Der Waals Heterostructures Using a Bright-Field Optical Microscope. Nano Lett 2017, 17, 5342–5349. [Google Scholar] [CrossRef]
- Higashitarumizu, N.; Uddin, S.Z.; Weinberg, D.; Azar, N.S.; Reaz Rahman, I.K.M.; Wang, V.; Crozier, K.B.; Rabani, E.; Javey, A. Anomalous Thickness Dependence of Photoluminescence Quantum Yield in Black Phosphorous. Nat. Nanotechnol. 2023, 18, 507–513. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G. Optical Identification of Atomically Thin Dichalcogenide Crystals. Appl. Phys. Lett. 2010, 96, 213116. [Google Scholar] [CrossRef]
- Bing, D.; Wang, Y.; Bai, J.; Du, R.; Wu, G.; Liu, L. Optical Contrast for Identifying the Thickness of Two-Dimensional Materials. Opt. Commun. 2018, 406, 128–138. [Google Scholar] [CrossRef]
- Brotons-Gisbert, M.; Sánchez-Royo, J.F.; Martínez-Pastor, J.P. Thickness Identification of Atomically Thin InSe Nanoflakes on SiO2/Si Substrates by Optical Contrast Analysis. Appl. Surf. Sci. 2015, 354, 453–458. [Google Scholar] [CrossRef]
- Zhao, Q.; Puebla, S.; Zhang, W.; Wang, T.; Frisenda, R.; Castellanos-Gomez, A. Thickness Identification of Thin InSe by Optical Microscopy Methods. Adv. Photonics Res. 2020, 1, 200025. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Gao, R.X.; Ni, Z.H.; He, H.; Guo, S.P.; Yang, H.P.; Cong, C.X.; Yu, T. Thickness Identification of Two-Dimensional Materials by Optical Imaging. Nanotechnology 2012, 23, 495713. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, J.; Zhang, Y.; Wang, H.; Lin, G.; Xiong, X.; Zhou, W.; Luo, H.; Li, D. Fabrication of Single Phase 2D Homologous Perovskite Microplates by Mechanical Exfoliation. 2D Mater. 2018, 5, 021001. [Google Scholar] [CrossRef]
- Brotons-Gisbert, M.; Andres-Penares, D.; Suh, J.; Hidalgo, F.; Abargues, R.; Rodr, P.J.; Ordejon, P.; Wu, J.; Mart, J.P. Nanotexturing To Enhance Photoluminescent Response of Atomically Thin Indium Selenide with Highly Tunable Band Gap. Nano Lett. 2016, 16, 3221–3229. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Huang, S.; Wang, C.; Luo, J.; Yan, H. The Optical Properties of Few-Layer InSe. J. Appl. Phys. 2020, 128, 060901. [Google Scholar] [CrossRef]
- Severs Millard, T.; Genco, A.; Alexeev, E.M.; Randerson, S.; Ahn, S.; Jang, A.-R.; Suk Shin, H.; Tartakovskii, A.I. Large Area Chemical Vapour Deposition Grown Transition Metal Dichalcogenide Monolayers Automatically Characterized through Photoluminescence Imaging. Npj 2D Mater. Appl. 2020, 4, 12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.; Ma, Y.; Wan, Q.; Yu, B.; Huang, S.; Yan, H. Hunting for Monolayer Black Phosphorus with Photoluminescence Microscopy. Photonics 2024, 11, 866. https://doi.org/10.3390/photonics11090866
Pan C, Ma Y, Wan Q, Yu B, Huang S, Yan H. Hunting for Monolayer Black Phosphorus with Photoluminescence Microscopy. Photonics. 2024; 11(9):866. https://doi.org/10.3390/photonics11090866
Chicago/Turabian StylePan, Chenghao, Yixuan Ma, Quan Wan, Boyang Yu, Shenyang Huang, and Hugen Yan. 2024. "Hunting for Monolayer Black Phosphorus with Photoluminescence Microscopy" Photonics 11, no. 9: 866. https://doi.org/10.3390/photonics11090866
APA StylePan, C., Ma, Y., Wan, Q., Yu, B., Huang, S., & Yan, H. (2024). Hunting for Monolayer Black Phosphorus with Photoluminescence Microscopy. Photonics, 11(9), 866. https://doi.org/10.3390/photonics11090866