Hunting for Monolayer Black Phosphorus with Photoluminescence Microscopy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jones, A.M.; Seyler, K.L.; Tran, V.; Jia, Y.; Zhao, H.; Wang, H.; Yang, L.; Xu, X.; Xia, F. Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus. Nat. Nanotechnol. 2015, 10, 517–521. [Google Scholar] [CrossRef]
- Lee, S.; Yang, F.; Suh, J.; Yang, S.; Lee, Y.; Li, G.; Sung Choe, H.; Suslu, A.; Chen, Y.; Ko, C.; et al. Anisotropic In-Plane Thermal Conductivity of Black Phosphorus Nanoribbons at Temperatures Higher than 100 K. Nat. Commun. 2015, 6, 8573. [Google Scholar] [CrossRef]
- Huang, S.; Wang, C.; Xie, Y.; Yu, B.; Yan, H. Optical Properties and Polaritons of Low Symmetry 2D Materials. Photonics Insights 2023, 2, R03. [Google Scholar] [CrossRef]
- Kim, J.; Baik, S.S.; Ryu, S.H.; Sohn, Y.; Park, S.; Park, B.-G.; Denlinger, J.; Yi, Y.; Choi, H.J.; Kim, K.S. Observation of Tunable Band Gap and Anisotropic Dirac Semimetal State in Black Phosphorus. Science 2015, 349, 723–726. [Google Scholar] [CrossRef]
- Li, L. Direct Observation of the Layer-Dependent Electronic Structure in Phosphorene. Nat. Nanotechnol. 2017, 12, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, G.; Fan, F.; Song, C.; Wang, F.; Xing, Q.; Wang, C.; Wu, H.; Yan, H. Strain-Tunable van Der Waals Interactions in Few-Layer Black Phosphorus. Nat. Commun. 2019, 10, 2447. [Google Scholar] [CrossRef]
- Huang, S.; Lu, Y.; Wang, F.; Lei, Y.; Song, C.; Zhang, J.; Xing, Q.; Wang, C.; Xie, Y.; Mu, L.; et al. Layer-Dependent Pressure Effect on the Electronic Structure of 2D Black Phosphorus. Phys. Rev. Lett. 2021, 127, 186401. [Google Scholar] [CrossRef]
- Huang, S.; Wang, F.; Zhang, G.; Song, C.; Lei, Y.; Xing, Q.; Wang, C.; Zhang, Y.; Zhang, J.; Xie, Y.; et al. From Anomalous to Normal: Temperature Dependence of the Band Gap in Two-Dimensional Black Phosphorus. Phys. Rev. Lett. 2020, 125, 156802. [Google Scholar] [CrossRef]
- Lei, Y.; Ma, J.; Luo, J.; Huang, S.; Yu, B.; Song, C.; Xing, Q.; Wang, F.; Xie, Y.; Zhang, J.; et al. Layer-Dependent Exciton Polarizability and the Brightening of Dark Excitons in Few-Layer Black Phosphorus. Nat. Commun. 2023, 14, 5314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Huang, S.; Wang, F.; Yan, H. Layer-Dependent Electronic and Optical Properties of 2D Black Phosphorus: Fundamentals and Engineering. Laser Photonics Rev. 2021, 15, 2000399. [Google Scholar] [CrossRef]
- Li, W.; Tao, Q.; Li, Z.; Yang, G.; Lu, Z.; Chen, Y.; Wen, Y.; Wang, Y.; Liao, L.; Liu, Y.; et al. Monolayer Black Phosphorus and Germanium Arsenide Transistors via van Der Waals Channel Thinning. Nat. Electron. 2023, 7, 131–137. [Google Scholar] [CrossRef]
- Huang, M.; Wang, M.; Chen, C.; Ma, Z.; Li, X.; Han, J.; Wu, Y. Broadband Black-Phosphorus Photodetectors with High Responsivity. Adv. Mater. 2016, 28, 3481–3485. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhou, Y.; Wang, J.; Shao, Y.; Kong, D.; Gao, Y.; Wang, Y. The Pump Fluence and Wavelength-Dependent Ultrafast Carrier Dynamics and Optical Nonlinear Absorption in Black Phosphorus Nanosheets. Nanophotonics 2020, 9, 2033–2043. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H.; Sun, Z.; Wang, J.; Zhou, C.; Wang, Y.; Guo, X.; et al. Black Phosphorus Based Photocathodes in Wideband Bifacial Dye-Sensitized Solar Cells. Adv. Mater. 2016, 28, 8937–8944. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Hu, H.; Ouyang, G.; Wang, J.; Shi, R.; Zhang, L.; Zeng, Q.; Zhu, C.; Chen, S.; Cheng, C.; et al. Black Phosphorus-Based van Der Waals Heterostructures for Mid-Infrared Light-Emission Applications. Light Sci. Appl. 2020, 9, 114. [Google Scholar] [CrossRef]
- Higashitarumizu, N.; Tajima, S.; Kim, J.; Cai, M.; Javey, A. Long Operating Lifetime Mid-Infrared LEDs Based on Black Phosphorus. Nat. Commun. 2023, 14, 4845. [Google Scholar] [CrossRef]
- Kou, L.; Frauenheim, T.; Chen, C. Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I−V Response. J. Phys. Chem. Lett. 2014, 5, 2675–2681. [Google Scholar] [CrossRef]
- Rodin, A.S.; Carvalho, A.; Neto, A.H.C. Excitons in Anisotropic Two-Dimensional Semiconducting Crystals. Phys. Rev. B 2014, 90, 075429. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, S.; Wang, F.; Yang, J.; Wang, Z.; Pei, J.; Myint, Y.W.; Xing, B.; Yu, Z.; Fu, L.; et al. Extraordinarily Bound Quasi-One-Dimensional Trions in Two-Dimensional Phosphorene Atomic Semiconductors. ACS Nano 2016, 10, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, C.; Chaves, A.; Song, C.; Zhang, G.; Huang, S.; Lei, Y.; Xing, Q.; Mu, L.; Xie, Y.; et al. Prediction of Hyperbolic Exciton-Polaritons in Monolayer Black Phosphorus. Nat. Commun. 2021, 12, 5628. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, R.; Pei, J.; Myint, Y.W.; Wang, F.; Wang, Z.; Zhang, S.; Yu, Z.; Lu, Y. Optical Tuning of Exciton and Trion Emissions in Monolayer Phosphorene. Light Sci. Appl. 2015, 4, e312. [Google Scholar] [CrossRef]
- Nemilentsau, A.; Low, T.; Hanson, G. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics. Phys. Rev. Lett. 2016, 116, 066804. [Google Scholar] [CrossRef]
- Biswas, S.; Wong, J.; Pokawanvit, S.; Yang, W.-C.D.; Zhang, H.; Akbari, H.; Watanabe, K.; Taniguchi, T.; Davydov, A.V. Edge-Confined Excitons in Monolayer Black Phosphorus. ACS Nano 2023, 17, 23692–23701. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, X.; Lu, G. Pseudo-Heterostructure and Condensation of 1D Moiré Excitons in Twisted Phosphorene Bilayers. Sci. Adv. 2023, 9, eadi5404. [Google Scholar] [CrossRef]
- Soltero, I.; Guerrero-Sánchez, J.; Mireles, F.; Ruiz-Tijerina, D.A. Moiré Band Structures of Twisted Phosphorene Bilayers. Phys. Rev. B 2022, 105, 235421. [Google Scholar] [CrossRef]
- Pan, D.; Wang, T.-C.; Xiao, W.; Hu, D.; Yao, Y. Simulations of Twisted Bilayer Orthorhombic Black Phosphorus. Phys. Rev. B 2017, 96, 041411. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, E.; Üzer, E.A.; Guo, S.; Qi, R.; Tan, J.; Watanabe, K.; Taniguchi, T.; Nilges, T.; Gao, P.; et al. Anisotropic Moiré Optical Transitions in Twisted Monolayer/Bilayer Phosphorene Heterostructures. Nat. Commun. 2021, 12, 3947. [Google Scholar] [CrossRef]
- Kang, P.; Zhang, W.-T.; Michaud-Rioux, V.; Kong, X.-H.; Hu, C.; Yu, G.-H.; Guo, H. Moiré Impurities in Twisted Bilayer Black Phosphorus: Effects on the Carrier Mobility. Phys. Rev. B 2017, 96, 195406. [Google Scholar] [CrossRef]
- Cao, T.; Li, Z.; Qiu, D.Y.; Louie, S.G. Gate Switchable Transport and Optical Anisotropy in 90° Twisted Bilayer Black Phosphorus. Nano Lett 2016, 16, 5542–5546. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, H.; Lu, S.; Wang, Z.; Tang, S.; Shao, J.; Sun, Z.; Xie, H.; Wang, H.; Yu, X.-F.; et al. From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics. Adv. Funct. Mater. 2015, 25, 6996–7002. [Google Scholar] [CrossRef]
- Erande, M.B.; Pawar, M.S.; Late, D.J. Humidity Sensing and Photodetection Behavior of Electrochemically Exfoliated Atomically Thin-Layered Black Phosphorus Nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11548–11556. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.B. Growth of 2D Black Phosphorus Film from Chemical Vapor Deposition. Nanotechnology 2016, 27, 215602. [Google Scholar] [CrossRef]
- Jia, J.; Jang, S.K.; Lai, S.; Xu, J.; Choi, Y.J.; Park, J.-H.; Lee, S. Plasma-Treated Thickness-Controlled Two-Dimensional Black Phosphorus and Its Electronic Transport Properties. ACS Nano 2015, 9, 8729–8736. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Ono, L.K.; Qi, Y.; Oughaddou, H. Recent Advances in Phosphorene: Structure, Synthesis, and Properties. Small 2024, 20, 202303115. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, S.; Guo, Y.; Wang, Q. Photocarrier Dynamics in Monolayer Phosphoreneand Bulk Black Phosphorus. Nanoscale 2016, 8, 233–242. [Google Scholar] [CrossRef]
- Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L’Heureux, A.-L.; Tang, N.Y.-W.; Lévesque, P.L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat. Mater. 2015, 14, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Wang, F. Electronic Structures of Air-Exposed Few-Layer Black Phosphorus by Optical Spectroscopy. Phys. Rev. B 2019, 99, 075427. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q.; Zhang, H. Rapid and Reliable Thickness Identification of Two-Dimensional Nanosheets Using Optical Microscopy. ACS Nano 2013, 7, 10344–10353. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Z.; Han, H.; Ling, H.; Zhang, X.; Wang, Y.; Wang, Q.; Li, H.; Zhang, Y.; Zhang, J.; et al. A Universal Approach to Determine the Atomic Layer Numbers in Two-Dimensional Materials Using Dark-Field Optical Contrast. Nano Lett. 2023, 23, 9170–9177. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Fei, R.; Hu, S.; Li, T.; Zheng, B.; Shi, Y.; Zhao, J.; Zhang, L.; Gan, X.; Wang, X. Observation of Excitonic Series in Monolayer and Few-Layer Black Phosphorus. Phys. Rev. B 2020, 101, 235407. [Google Scholar] [CrossRef]
- Rubio-Bollinger, G.; Guerrero, R.; De Lara, D.; Quereda, J.; Vaquero-Garzon, L.; Agraït, N.; Bratschitsch, R.; Castellanos-Gomez, A. Enhanced Visibility of MoS2, MoSe2, WSe2 and Black-Phosphorus: Making Optical Identification of 2D Semiconductors Easier. Electronics 2015, 4, 847–856. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J.O.; Narasimha-Acharya, K.L.; Blanter, S.I.; Groenendijk, D.J.; Buscema, M.; Steele, G.A.; Alvarez, J.V.; et al. Isolation and Characterization of Few-Layer Black Phosphorus. 2D Mater. 2014, 1, 025001. [Google Scholar] [CrossRef]
- Alexeev, E.M.; Catanzaro, A.; Skrypka, O.V.; Nayak, P.K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J.I.; Novoselov, K.S.; Shin, H.S.; et al. Imaging of Interlayer Coupling in van Der Waals Heterostructures Using a Bright-Field Optical Microscope. Nano Lett 2017, 17, 5342–5349. [Google Scholar] [CrossRef]
- Higashitarumizu, N.; Uddin, S.Z.; Weinberg, D.; Azar, N.S.; Reaz Rahman, I.K.M.; Wang, V.; Crozier, K.B.; Rabani, E.; Javey, A. Anomalous Thickness Dependence of Photoluminescence Quantum Yield in Black Phosphorous. Nat. Nanotechnol. 2023, 18, 507–513. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G. Optical Identification of Atomically Thin Dichalcogenide Crystals. Appl. Phys. Lett. 2010, 96, 213116. [Google Scholar] [CrossRef]
- Bing, D.; Wang, Y.; Bai, J.; Du, R.; Wu, G.; Liu, L. Optical Contrast for Identifying the Thickness of Two-Dimensional Materials. Opt. Commun. 2018, 406, 128–138. [Google Scholar] [CrossRef]
- Brotons-Gisbert, M.; Sánchez-Royo, J.F.; Martínez-Pastor, J.P. Thickness Identification of Atomically Thin InSe Nanoflakes on SiO2/Si Substrates by Optical Contrast Analysis. Appl. Surf. Sci. 2015, 354, 453–458. [Google Scholar] [CrossRef]
- Zhao, Q.; Puebla, S.; Zhang, W.; Wang, T.; Frisenda, R.; Castellanos-Gomez, A. Thickness Identification of Thin InSe by Optical Microscopy Methods. Adv. Photonics Res. 2020, 1, 200025. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Gao, R.X.; Ni, Z.H.; He, H.; Guo, S.P.; Yang, H.P.; Cong, C.X.; Yu, T. Thickness Identification of Two-Dimensional Materials by Optical Imaging. Nanotechnology 2012, 23, 495713. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, J.; Zhang, Y.; Wang, H.; Lin, G.; Xiong, X.; Zhou, W.; Luo, H.; Li, D. Fabrication of Single Phase 2D Homologous Perovskite Microplates by Mechanical Exfoliation. 2D Mater. 2018, 5, 021001. [Google Scholar] [CrossRef]
- Brotons-Gisbert, M.; Andres-Penares, D.; Suh, J.; Hidalgo, F.; Abargues, R.; Rodr, P.J.; Ordejon, P.; Wu, J.; Mart, J.P. Nanotexturing To Enhance Photoluminescent Response of Atomically Thin Indium Selenide with Highly Tunable Band Gap. Nano Lett. 2016, 16, 3221–3229. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Huang, S.; Wang, C.; Luo, J.; Yan, H. The Optical Properties of Few-Layer InSe. J. Appl. Phys. 2020, 128, 060901. [Google Scholar] [CrossRef]
- Severs Millard, T.; Genco, A.; Alexeev, E.M.; Randerson, S.; Ahn, S.; Jang, A.-R.; Suk Shin, H.; Tartakovskii, A.I. Large Area Chemical Vapour Deposition Grown Transition Metal Dichalcogenide Monolayers Automatically Characterized through Photoluminescence Imaging. Npj 2D Mater. Appl. 2020, 4, 12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.; Ma, Y.; Wan, Q.; Yu, B.; Huang, S.; Yan, H. Hunting for Monolayer Black Phosphorus with Photoluminescence Microscopy. Photonics 2024, 11, 866. https://doi.org/10.3390/photonics11090866
Pan C, Ma Y, Wan Q, Yu B, Huang S, Yan H. Hunting for Monolayer Black Phosphorus with Photoluminescence Microscopy. Photonics. 2024; 11(9):866. https://doi.org/10.3390/photonics11090866
Chicago/Turabian StylePan, Chenghao, Yixuan Ma, Quan Wan, Boyang Yu, Shenyang Huang, and Hugen Yan. 2024. "Hunting for Monolayer Black Phosphorus with Photoluminescence Microscopy" Photonics 11, no. 9: 866. https://doi.org/10.3390/photonics11090866
APA StylePan, C., Ma, Y., Wan, Q., Yu, B., Huang, S., & Yan, H. (2024). Hunting for Monolayer Black Phosphorus with Photoluminescence Microscopy. Photonics, 11(9), 866. https://doi.org/10.3390/photonics11090866