Thermo-Optic Switch with High Tuning Efficiency Based on Nanobeam Cavity and Hydrogen-Doped Indium Oxide Microheater
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asghari, M.; Krishnamoorthy, A.V. Energy-efficient communication. Nat. Photonics 2011, 5, 268–270. [Google Scholar] [CrossRef]
- Hutchison, D.N.; Sun, J.; Doylend, J.K.; Kumar, R.; Heck, J.; Kim, W.; Phare, C.T.; Feshali, A.; Rong, H. High-resolution aliasing-free optical beam steering. Optica 2016, 3, 887–890. [Google Scholar] [CrossRef]
- Poulton, C.V.; Yaacobi, A.; Cole, D.B.; Byrd, M.J.; Raval, M.; Vermeulen, D.; Watts, M.R. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 2017, 42, 4091–4094. [Google Scholar] [CrossRef] [PubMed]
- Poulton, C.V.; Byrd, M.J.; Russo, P.; Timurdogan, E.; Khandaker, M.; Vermeulen, D.; Watts, M.R. Long-Range LiDAR and Free-Space Data Communication with High-Performance Optical Phased Arrays. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 7700108. [Google Scholar] [CrossRef]
- Wang, J.W.; Paesani, S.; Ding, Y.H.; Santagati, R.; Skrzypczyk, P.; Salavrakos, A.; Tura, J.; Augusiak, R.; Mancinska, L.; Bacco, D.; et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 2018, 360, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Qiang, X.; Zhou, X.; Wang, J.; Wilkes, C.M.; Loke, T.; O’Gara, S.; Kling, L.; Marshall, G.D.; Santagati, R.; Ralph, T.C.; et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 2018, 12, 534–539. [Google Scholar] [CrossRef]
- Bao, J.; Fu, Z.; Pramanik, T.; Mao, J.; Chi, Y.; Cao, Y.; Zhai, C.; Mao, Y.; Dai, T.; Chen, X.; et al. Very-large-scale integrated quantum graph photonics. Nat. Photonics 2023, 17, 573–581. [Google Scholar] [CrossRef]
- Cheng, J.; Xie, Y.; Liu, Y.; Song, J.; Liu, X.; He, Z.; Zhang, W.; Han, X.; Zhou, H.; Zhou, K.; et al. Human emotion recognition with a microcomb-enabled integrated optical neural network. Nanophotonics 2023, 12, 3883–3894. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, B.; Cheng, J.; Dong, J.; Zhang, X. Compact, efficient, and scalable nanobeam core for photonic matrix-vector multiplication. Optica 2024, 11, 190–196. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, H.; Wu, B.; Jiang, X.; Gao, D.; Xu, J.; Dong, J. Redundancy-free integrated optical convolver for optical neural networks based on arrayed waveguide grating. Nanophotonics 2024, 13, 19–28. [Google Scholar] [CrossRef]
- Liao, S.; Ding, Y.; Dong, J.; Wang, X.; Zhang, X. 125-GHz Microwave Signal Generation Employing an Integrated Pulse Shaper. J. Light. Technol. 2017, 35, 2741–2745. [Google Scholar] [CrossRef]
- Liu, S.; Wu, K.; Zhou, L.; Lu, L.; Zhang, B.; Zhou, G.; Chen, J. Microwave Pulse Generation with a Silicon Dual-Parallel Modulator. J. Light. Technol. 2020, 38, 2134–2143. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.; Deng, C.; Lu, M.; Zhu, W.; Yun, B.; Hu, G.; Cui, Y. Frequency-selectable microwave generation based on on-chip switchable spectral shaping and wavelength-to-time mapping. Opt. Express 2023, 31, 3179–3186. [Google Scholar] [CrossRef] [PubMed]
- Espinola, R.L.; Tsai, M.C.; Yardley, J.T.; Osgood, R.M. Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photon. Technol. Lett. 2003, 15, 1366–1368. [Google Scholar] [CrossRef]
- Gan, S.; Cheng, C.; Zhan, Y.; Huang, B.; Gan, X.; Li, S.; Lin, S.; Li, X.; Zhao, J.; Chen, H.; et al. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale 2015, 7, 20249–20255. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhu, X.; Frandsen, L.H.; Xiao, S.; Mortensen, N.A.; Dong, J.; Ding, Y. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat. Commun. 2017, 8, 14411. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, H.D.; Wang, S.; Wang, Y.J.; Wang, Y.Z.; Guo, Z.N.; Xiao, S.M.; Yao, Y.; Song, Q.H.; Zhang, H.; et al. Highly Efficient Silicon Photonic Microheater Based on Black Arsenic-Phosphorus. Adv. Opt. Mater. 2020, 8, 1901526. [Google Scholar] [CrossRef]
- Cheng, Z.; Cao, R.; Guo, J.; Yao, Y.; Wei, K.; Gao, S.; Wang, Y.; Dong, J.; Zhang, H. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics 2020, 9, 1973–1979. [Google Scholar] [CrossRef]
- Parra, J.; Hurtado, J.; Griol, A.; Sanchis, P. Ultra-low loss hybrid ITO/Si thermo-optic phase shifter with optimized power consumption. Opt. Express 2020, 28, 9393–9404. [Google Scholar] [CrossRef]
- Tong, W.; Yang, E.; Pang, Y.; Yang, H.; Qian, X.; Yang, R.; Hu, B.; Dong, J.; Zhang, X. An Efficient, Fast-Responding, Low-Loss Thermo-Optic Phase Shifter Based on a Hydrogen-Doped Indium Oxide Microheater. Laser Photon. Rev. 2023, 17, 2201032. [Google Scholar] [CrossRef]
- Watts, M.R.; Sun, J.; DeRose, C.; Trotter, D.C.; Young, R.W.; Nielson, G.N. Adiabatic thermo-optic Mach-Zehnder switch. Opt. Lett. 2013, 38, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.Y.; Wei, Y.X.; Zhou, H.L.; Dong, J.J.; Zhang, X.L. The Design of a Low-Loss, Fast-Response, Metal Thermo-Optic Phase Shifter Based on Coupled-Mode Theory. Photonics 2022, 9, 447. [Google Scholar] [CrossRef]
- Wei, Y.X.; Cheng, J.W.; Wang, Y.L.; Zhou, H.L.; Dong, J.J.; Huang, D.M.; Li, F.; Li, M.; Wai, P.K.A.; Zhang, X.L. Strategy for Low-Loss Optical Devices When Using High-Loss Materials. Adv. Photonics Res. 2022, 3, 2200120. [Google Scholar] [CrossRef]
- Zhong, C.; Ma, H.; Sun, C.; Wei, M.; Ye, Y.; Tang, B.; Zhang, P.; Liu, R.; Li, J.; Li, L.; et al. Fast thermo-optical modulators with doped-silicon heaters operating at 2 μm. Opt. Express 2021, 29, 23508–23516. [Google Scholar] [CrossRef]
- Oz, D.; Suleymanov, N.; Minkovich, B.; Kostianovskii, V.; Gantz, L.; Polyushkin, D.; Mueller, T.; Goykhman, I. Optically Transparent and Thermally Efficient 2D MoS2 Heaters Integrated with Silicon Microring Resonators. ACS Photonics 2023, 10, 1783–1794. [Google Scholar] [CrossRef]
- Chung, S.; Nakai, M.; Hashemi, H. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express 2019, 27, 13430–13459. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Liu, Y.; Luan, C.; Kong, D.; Guan, X.; Ding, Y.; Hu, H. Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt. Lett. 2020, 45, 4806–4809. [Google Scholar] [CrossRef]
- Nejadriahi, H.; Pappert, S.; Fainman, Y.; Yu, P. Efficient and compact thermo-optic phase shifter in silicon-rich silicon nitride. Opt. Lett. 2021, 46, 4646–4649. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Qiu, C.; Yang, Y.; Zhu, Q.; Jiang, X.; Zhang, Y.; Gao, W.; Su, Y. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Opt. Express 2017, 25, 19479–19486. [Google Scholar] [CrossRef]
- Zhou, H.; Qiu, C.; Jiang, X.; Zhu, Q.; He, Y.; Zhang, Y.; Su, Y.; Soref, R. Compact, submilliwatt, 2 × 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities. Photonics Res. 2017, 5, 108–112. [Google Scholar] [CrossRef]
Structure | Method | Ref | Power [mW] | Efficiency [nm/mW] | ER [dB] | Response Time [μs] | Year |
---|---|---|---|---|---|---|---|
MZI | PhCW a + graphene | [16] | 3.99 | 1.07 | ~8 | 0.750/0.525 | 2017 |
strip WG + IHO | [20] | 9.6 | 0.0472 | ~20 | 0.970/0.980 | 2023 | |
adiabatic bend + doped silicon | [21] | 12.7 | \ | ~25 | 1.2/2.4 | 2013 | |
MRR | rib WG + graphene | [15] | 28 | ~0.104 | 7 | 0.700/0.800 | 2015 |
rib WG + doped silicon | [24] | 3.33 | 0.1 | ~8 | 3.56/3.70 | 2021 | |
strip WG + MoS2 | [25] | 7.5 | 0.1 | ~25 | 26/24 | 2023 | |
PCNC | strip WG + graphene | [29] | \ | 1.5 | 8 | 1.11/1.47 | 2017 |
strip WG + Ti | [30] | 0.16 | 1.23 | 15 | 3.1/4.5 | 2017 | |
strip WG + TiCr | this work | 5.60 | 0.907 | 27.6 | 6.75/4.70 | ||
strip WG + IHO | this work | 2.86 | 1.326 | 25.8 | 3.90/2.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, W.; Li, S.; Zhang, J.; Dong, J.; Hu, B.; Zhang, X. Thermo-Optic Switch with High Tuning Efficiency Based on Nanobeam Cavity and Hydrogen-Doped Indium Oxide Microheater. Photonics 2024, 11, 738. https://doi.org/10.3390/photonics11080738
Tong W, Li S, Zhang J, Dong J, Hu B, Zhang X. Thermo-Optic Switch with High Tuning Efficiency Based on Nanobeam Cavity and Hydrogen-Doped Indium Oxide Microheater. Photonics. 2024; 11(8):738. https://doi.org/10.3390/photonics11080738
Chicago/Turabian StyleTong, Weiyu, Shangjing Li, Jiahui Zhang, Jianji Dong, Bin Hu, and Xinliang Zhang. 2024. "Thermo-Optic Switch with High Tuning Efficiency Based on Nanobeam Cavity and Hydrogen-Doped Indium Oxide Microheater" Photonics 11, no. 8: 738. https://doi.org/10.3390/photonics11080738
APA StyleTong, W., Li, S., Zhang, J., Dong, J., Hu, B., & Zhang, X. (2024). Thermo-Optic Switch with High Tuning Efficiency Based on Nanobeam Cavity and Hydrogen-Doped Indium Oxide Microheater. Photonics, 11(8), 738. https://doi.org/10.3390/photonics11080738