A Numerical Study of Microwave Frequency Comb Generation in a Semiconductor Laser Subject to Modulated Optical Injection and Optoelectronic Feedback
Abstract
:1. Introduction
2. Theoretical Model
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, F.Y.; Liu, J.M. Diverse waveform generation using semiconductor lasers for radar and microwave applications. IEEE J. Quantum Electron. 2004, 40, 682–689. [Google Scholar] [CrossRef]
- Xu, Z.; Shu, X. Fiber Optic Sensor Based on Vernier Microwave Frequency Comb. J. Lightw. Technol. 2019, 37, 3503–3509. [Google Scholar] [CrossRef]
- Yasui, T.; Yokoyama, S.; Inaba, H.; Minoshima, K.; Nagatsuma, T.; Araki, T. Terahertz Frequency Metrology Based on Frequency Comb. IEEE J. Sel. Topics Quantum Electron. 2011, 17, 191–201. [Google Scholar] [CrossRef]
- Ng’oma, A.; Fortusini, D.; Parekh, D.; Yang, W.; Sauer, M.; Benjamin, S.D.; Hofmann, W.H.E.; Amann, M.C.; Chang-Hasnain, C.J. Performance of a Multi-Gb/s 60 GHz Radio Over Fiber System Employing a Directly Modulated Optically Injection-Locked VCSEL. J. Lightw. Technol. 2010, 28, 2436–2444. [Google Scholar] [CrossRef]
- Hagmann, M.J.; Stenger, F.S.; Yarotski, D.A. Linewidth of the harmonics in a microwave frequency comb generated by focusing a mode-locked ultrafast laser on a tunneling junction. J. Appl. Phys. 2013, 114, 223107. [Google Scholar] [CrossRef]
- Hagmann, M.J.; Efimov, A.; Taylor, A.J.; Yarotski, D.A. Microwave frequency-comb generation in a tunneling junction by intermode mixing of ultrafast laser pulses. Appl. Phys. Lett. 2011, 99, 011112. [Google Scholar] [CrossRef]
- Chan, S.C.; Xia, G.; Liu, J.M. Optical generation of a precise microwave frequency comb by harmonic frequency locking. Opt. lett. 2007, 32, 1917–1919. [Google Scholar] [CrossRef] [PubMed]
- Quirce, A.; de Dios, C.; Valle, A.; Acedo, P. VCSEL-Based Optical Frequency Combs Expansion Induced by Polarized Optical Injection. IEEE J. Sel. Topics Quantum Electron. 2019, 25, 1–9. [Google Scholar] [CrossRef]
- AlMulla, M. Microwave frequency comb generation through optical double-locked semiconductor lasers. Optik 2020, 223, 165506. [Google Scholar] [CrossRef]
- Rosado, A.; Martin, E.P.; Pérez-Serrano, A.; Tijero, J.M.G.; Esquivias, I.; Anandarajah, P.M. Optical frequency comb generation via pulsed gain-switching in externally-injected semiconductor lasers using step-recovery diodes. Opt. Laser Technol. 2020, 131, 106392. [Google Scholar] [CrossRef]
- Doumbia, Y.; Wolfersberger, D.; Panajotov, K.; Sciamanna, M. Tailoring frequency combs through VCSEL polarization dynamics. Opt. Express 2021, 29, 33976–33991. [Google Scholar] [CrossRef] [PubMed]
- Jain, G.; Gutierrez-Pascual, D.; Wallace, M.J.; Donegan, J.F.; Anandarajah, P.M. Experimental Investigation of External Optical Injection and its Application in Gain-Switched Wavelength Tunable Optical Frequency Comb Generation. J. Lightw. Technol. 2021, 39, 5884–5895. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, Q. Research on Optical Mutual Injection to Generate Tunable Microwave Frequency Combs. Photonics 2024, 11, 195. [Google Scholar] [CrossRef]
- Li, W.; Yao, J. Investigation of Photonically Assisted Microwave Frequency Multiplication Based on External Modulation. IEEE Trans. Microw. Theory Tech. 2010, 58, 3259–3268. [Google Scholar] [CrossRef]
- Juan, Y.S.; Lin, F.Y. Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser. Opt. Express 2009, 17, 18596–18605. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Xia, G.; Tang, X.; Deng, T.; Chen, J.J.; Lin, X.; Li, Y.N.; Wu, Z. Tunable Ultra-Broadband Microwave Frequency Combs Generation Based on a Current Modulated Semiconductor Laser Under Optical Injection. IEEE Access 2017, 5, 17764–17771. [Google Scholar] [CrossRef]
- Xu, X.Q.; Fan, L.; Xia, G.; Wu, Z. Numerical Investigation on Ultra-Broadband Tunable Microwave Frequency Comb Generation Using a Semiconductor Laser under Regular Pulse Injection. IEEE Access 2018, 6, 55284–55290. [Google Scholar] [CrossRef]
- Shen, Z.; Jin, C.; Yang, J.; Zhang, S.; Tang, M.; Wang, K. Method for the generation of microwave frequency combs based on a Vernier optoelectronic feedback loop. Opt. Express 2020, 28, 35118–35127. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, M.; Gao, P.; Zhang, J.; Yin, B.; Wang, C.; Fan, G. Tunable Microwave Frequency Comb Generation Based on Actively Mode-Locked OEO. IEEE Photon. Technol. Lett. 2023, 35, 221–224. [Google Scholar] [CrossRef]
- Zhao, W.; Mao, Y.; Li, Y.; Chen, G.; Lu, D.; Kan, Q.; Zhao, L. Frequency-Tunable Broadband Microwave Comb Generation Using an Integrated Mutually Coupled DFB Laser. IEEE Photon. Technol. Lett. 2020, 32, 1407–1410. [Google Scholar] [CrossRef]
- Lo, K.H.; Hwang, S.K.; Donati, S. Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers. Opt. Express 2014, 22, 18648–18661. [Google Scholar] [CrossRef]
- Zhuang, J.; Chan, S.C. Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization. Opt. Lett. 2013, 38, 344–346. [Google Scholar] [CrossRef]
- Ji, S.; Hong, Y.; Spencer, P.S.; Benedikt, J.; Davies, I. Broad tunable photonic microwave generation based on period-one dynamics of optical injection vertical-cavity surface-emitting lasers. Opt. Express 2017, 25, 19863–19871. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Chan, S.C. Phase noise characteristics of microwave signals generated by semiconductor laser dynamics. Opt. Express 2015, 23, 2777–2797. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, S.S. Broad tunable photonic microwave signal generation using optically-injected 1310 nm spin-VCSELs. Results Phys. 2022, 44, 106007. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, P.; Li, K.; Bao, H.; Li, N. Photonic generation of high-performance microwave frequency combs using an optically injected semiconductor laser with dual-loop optoelectronic feedback. Opt. Lett. 2021, 46, 4622–4625. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhang, F.; Guo, Q.; Li, S.; Pan, S. Reconfigurable Radar Waveform Generation Based on an Optically Injected Semiconductor Laser. IEEE J. Sel. Topics Quantum Electron. 2017, 23, 1–9. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, F.; Pan, S. Generation of Linear Frequency-Modulated Waveforms by a Frequency-Sweeping Optoelectronic Oscillator. J. Lightw. Technol. 2018, 36, 3927–3934. [Google Scholar] [CrossRef]
- Zhuang, J.; Li, X.Z.; Li, S.; Chan, S.C. Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser. Opt. Lett. 2016, 41, 5764–5767. [Google Scholar] [CrossRef]
- Xue, C.; Ji, S.; Hong, Y.; Jiang, N.; Li, H.; Qiu, K. Numerical investigation of photonic microwave generation in an optically injected semiconductor laser subject to filtered optical feedback. Opt. Express 2019, 27, 5065–5082. [Google Scholar] [CrossRef]
- Kim, H.; Gnauck, A.H. Chirp characteristics of dual-drive. Mach-Zehnder modulator with a finite DC extinction ratio. IEEE Photon. Technol. Lett. 2002, 14, 298–300. [Google Scholar]
- Simpson, T.B.; Liu, J.M.; Huang, K.F.; Tai, K. Nonlinear dynamics induced by external optical injection in semiconductor lasers. Quantum Semiclass. Opt. 1997, 9, 765–784. [Google Scholar] [CrossRef]
- Ji, S.; Xue, C.; Valle, A.; Spencer, P.S.; Li, H.; Hong, Y. Stabilization of Photonic Microwave Generation in Vertical-Cavity Surface-Emitting Lasers with Optical Injection and Feedback. J. Lightw. Technol. 2018, 36, 4347–4353. [Google Scholar] [CrossRef]
- Xue, C.; Chang, D.S.; Fan, Y.; Ji, S.; Zhang, Z.; Lin, H.; Spencer, P.S.; Hong, Y. Characteristics of microwave photonic signal generation using vertical-cavity surface-emitting lasers with optical injection and feedback. J. Opt. Soc. Am. B 2020, 37, 1394–1400. [Google Scholar] [CrossRef]
- Brunel, M.; Vallet, M. Pulse-to-pulse coherent beat note generated by a passively Q-switched two-frequency laser. Opt. Lett. 2008, 33, 2524–2526. [Google Scholar] [CrossRef]
Parameters | Symbol | Value |
---|---|---|
The cavity decay rate | 0.536 ps−1 | |
The nonlinear carrier relaxation rate | 19.1 ns−1 | |
The differential carrier relaxation rate | 7.53 ns−1 | |
The spontaneous carrier relaxation rate | 5.96 ns−1 | |
Linewidth enhancement factor | b | 3.2 |
Frequency detuning of the optical injection | 7 GHz | |
Injection strength | 0.13 | |
FWHM of the free-running slave SL | 30 MHz | |
Half-wave voltage of the DMZM | 1 V | |
DC bias voltage | ||
Normalized bias current | J | 1.222 |
Modulation index of the upper arm | m | 0.12 |
Modulation frequency of the upper arm | 16.25 MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, C.; Chen, W.; Zhu, B.; Zhang, Z.; Hong, Y. A Numerical Study of Microwave Frequency Comb Generation in a Semiconductor Laser Subject to Modulated Optical Injection and Optoelectronic Feedback. Photonics 2024, 11, 741. https://doi.org/10.3390/photonics11080741
Xue C, Chen W, Zhu B, Zhang Z, Hong Y. A Numerical Study of Microwave Frequency Comb Generation in a Semiconductor Laser Subject to Modulated Optical Injection and Optoelectronic Feedback. Photonics. 2024; 11(8):741. https://doi.org/10.3390/photonics11080741
Chicago/Turabian StyleXue, Chenpeng, Wei Chen, Beibei Zhu, Zuxing Zhang, and Yanhua Hong. 2024. "A Numerical Study of Microwave Frequency Comb Generation in a Semiconductor Laser Subject to Modulated Optical Injection and Optoelectronic Feedback" Photonics 11, no. 8: 741. https://doi.org/10.3390/photonics11080741
APA StyleXue, C., Chen, W., Zhu, B., Zhang, Z., & Hong, Y. (2024). A Numerical Study of Microwave Frequency Comb Generation in a Semiconductor Laser Subject to Modulated Optical Injection and Optoelectronic Feedback. Photonics, 11(8), 741. https://doi.org/10.3390/photonics11080741