Optical Detection of Underwater Propeller Wake Based on a Position-Sensitive Detector
Abstract
:1. Introduction
2. Principle of the Underwater Vehicle Wake Detection
3. Experimental Setup
4. Simulation Analysis
5. Results and Discussion
5.1. Results of Propeller Wake Measurements Conducted in a Strong Density Stratification Water Environment
5.2. Results of Propeller Wake Measurements Conducted in a Linear Density Stratification Water Environment
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zong, S.G.; Zhang, X.; Duan, Z.K.; Yang, S.P.; Chen, B. Research on Laser Dual-Mode Fusion Detection Method of Ship Wake Bubbles. Appl. Sci. 2024, 14, 3695. [Google Scholar] [CrossRef]
- Higley, P.D. A Low-Cost Acoustic Positioning System for Small Manned Submarines. IEEE J. Oceanic. Eng. 1983, 8, 113–115. [Google Scholar] [CrossRef]
- Kumar, S.; Chinthaginjala, R.; Anbazhagan, R.; Nyangaresi, V.O.; Pau, G. Submarine Acoustic Target Strength Modeling at High-Frequency Asymptotic Scattering. IEEE Access 2024, 12, 4859–4870. [Google Scholar] [CrossRef]
- Kim, H.M.; Hong, S.Y.; Kwon, H.W.; Song, J.H.; Jeon, J.J.; Jung, W.J. Numerical simulation of submarines with anechoic coatings for acoustic target strength reduction. Nav. Eng. J. 2012, 124, 49–58. [Google Scholar]
- Zhou, S.L.; Fang, Z. Optimization Design of Acoustic Performance of Underwater Anechoic Coatings. Acoust. Aust. 2022, 50, 297–313. [Google Scholar] [CrossRef]
- Lan, C.F.; Yu, Z.L.; Chen, H.; Zhang, L.; Zhang, M. Research on Underwater Collaborative Detection Method Based on Complex Marine Environment. IEEE Access 2024, 12, 3464–3475. [Google Scholar] [CrossRef]
- Huang, B.; Liu, Z.Y.; Xu, Y.J.; Ding, Q.C.; Pan, M.C.; Hu, J.F.; Zhang, Q. Characteristics of Magnetic Fields Induced by the Wake of an Underwater Vehicle. Appl. Sci. 2022, 12, 7964. [Google Scholar] [CrossRef]
- Sitefanick, T. The Nonacoustic Detection of Submarines. Sci. Am. 1988, 258, 41. [Google Scholar] [CrossRef]
- Jiang, Y.N.; Yang, Z.Y.; Li, K.; Liu, T. Pre-Processing of Simulated Synthetic Aperture Radar Image Scenes Using Polarimetric Enhancement for Improved Ship Wake Detection. Remote Sens. 2024, 16, 658. [Google Scholar] [CrossRef]
- Tatavarti, R.; Ananth, P.N.; Rajasree, A.K.; Vidyalal, V.; Radhakrishnan, P.; Nampoori, V.P.N.; Vallabhan, C.P.G. Internal Waves-a Novel Measurement Technique. Curr. Sci. 1995, 69, 678–684. [Google Scholar]
- Swain, S.K.; Trinath, K. Non-Acoustic Detection of Moving Submerged Bodies in Ocean. Int. J. Innov. Res. Dev. 2012, 1, 361–372. [Google Scholar]
- Voropayev, S.I.; McEachern, G.B.; Fernando, H.J.S.; Boyer, D.L. Large vortex structures behind a maneuvering body in stratified fluids. Phys. Fluids 1999, 11, 1682–1684. [Google Scholar] [CrossRef]
- Voropayev, S.I.; Smirnov, S.A. Vortex streets generated by a moving momentum source in a stratified fluid. Phys. Fluids 2003, 15, 618–624. [Google Scholar] [CrossRef]
- Bentley, J.P.; Mudd, J.W. Vortex shedding mechanisms in single and dual bluff bodies. Flow Meas. Instrum. 2003, 14, 23–31. [Google Scholar] [CrossRef]
- Schulte-Pelkum, N.; Wieskotten, S.; Hanke, W.; Dehnhardt, G.; Mauck, B. Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina). J. Exp. Biol. 2007, 210, 781–787. [Google Scholar] [CrossRef]
- Gläser, N.; Wieskotten, S.; Otter, C.; Dehnhardt, G.; Hanke, W. Hydrodynamic trail following in a California sea lion (Zalophus californianus). J. Comp. Physiol. A 2011, 197, 141–151. [Google Scholar] [CrossRef]
- Hanke, W.; Wieskotten, S.; Marshall, C.; Dehnhardt, G. Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae). J. Comp. Physiol. A 2013, 199, 421–440. [Google Scholar] [CrossRef] [PubMed]
- Dehnhardt, G.; Mauck, B.; Bleckmann, H. Seal whiskers detect water movements. Nature 1998, 394, 235–236. [Google Scholar] [CrossRef]
- Eberhardt, W.C.; Wakefield, B.F.; Murphy, C.T.; Casey, C.; Shakhsheer, Y.; Calhoun, B.H.; Reichmuth, C. Development of an artificial sensor for hydrodynamic detection inspired by a seal’s whisker array. Bioinspir. Biomim. 2016, 11, 056011. [Google Scholar] [CrossRef] [PubMed]
- Dalziel, S.B.; Hughes, G.O.; Sutherland, B.R. Whole-field density measurements by ‘synthetic schlieren’. Exp. Fluids 2000, 28, 322–335. [Google Scholar] [CrossRef]
- Elsinga, G.E.; van Oudheusden, B.W.; Scarano, F.; Watt, D.W. Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren. Exp. Fluids 2004, 36, 309–325. [Google Scholar] [CrossRef]
- Hargather, M.J.; Settles, G.S. A comparison of three quantitative schlieren techniques. Opt. Laser Eng. 2012, 50, 8–17. [Google Scholar] [CrossRef]
- Ben-Gida, H.; Liberzon, A.; Gurka, R. A stratified wake of a hydrofoil accelerating from rest. Exp. Therm. Fluid Sci. 2016, 70, 366–380. [Google Scholar] [CrossRef]
- Stella, A.; Guj, G.; Di Felice, F. Propeller wake flowfield analysis by means of LDV phase sampling techniques. Exp. Fluids 2000, 28, 1–10. [Google Scholar] [CrossRef]
- Paik, B.G.; Ahn, J.W.; Seol, H.S.; Park, Y.H.; Kim, K.; Cheon, H.G. Development of LDV (Laser Doppler Velocimetry) for Measuring Three Dimensional Hull Wake of Ship Model in Large Cavitation Tunnel. J. Soc. Nav. Archit. Korea 2017, 54, 515–521. [Google Scholar] [CrossRef]
- Tatavarti, R.; Sanjaya, K.S.; Trinath, K.; Arulmozhivarman, P. Evolution of Non Acoustic Detection Systems. Inst. Def. Sci. Technol. J. 2013, 12, 1–13. [Google Scholar]
- Zhang, S.W.; Li, L.Y.; Liu, Y.L.; Zhou, Y. Drift Error Compensation Algorithm for Heterodyne Optical Seawater Refractive Index Monitoring of Unstable Signals. Sensors 2023, 23, 8460. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Z.; Guo, C.Y.; Su, Y.M.; Wu, T.C. A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers. Int. J. Nav. Arch. Ocean 2018, 10, 212–224. [Google Scholar] [CrossRef]
- Wang, L.Z.; Guo, C.Y.; Xu, P.; Su, Y.M. Analysis of the performance of an oscillating propeller in cavitating flow. Ocean Eng. 2018, 164, 23–39. [Google Scholar] [CrossRef]
- Wang, L.Z.; Guo, C.Y.; Xu, P.; Su, Y.M. Analysis of the wake dynamics of a propeller operating before a rudder. Ocean Eng. 2019, 188, 106250. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, G.; Liu, Q.; Wang, H.; Li, L.; Zhou, Y.; Chen, X. Optical Detection of Underwater Propeller Wake Based on a Position-Sensitive Detector. Photonics 2024, 11, 732. https://doi.org/10.3390/photonics11080732
Zhou G, Liu Q, Wang H, Li L, Zhou Y, Chen X. Optical Detection of Underwater Propeller Wake Based on a Position-Sensitive Detector. Photonics. 2024; 11(8):732. https://doi.org/10.3390/photonics11080732
Chicago/Turabian StyleZhou, Guanlong, Qin Liu, Hu Wang, Liyan Li, Yan Zhou, and Xinyu Chen. 2024. "Optical Detection of Underwater Propeller Wake Based on a Position-Sensitive Detector" Photonics 11, no. 8: 732. https://doi.org/10.3390/photonics11080732
APA StyleZhou, G., Liu, Q., Wang, H., Li, L., Zhou, Y., & Chen, X. (2024). Optical Detection of Underwater Propeller Wake Based on a Position-Sensitive Detector. Photonics, 11(8), 732. https://doi.org/10.3390/photonics11080732