A Review of Indoor Optical Wireless Communication
Abstract
:1. Introduction
2. Indoor OWC Research
2.1. VLC Research
2.2. NIR Light Communication Research
VLC | NIR-OWC | |
---|---|---|
Light sources | LED | LD |
Operating wavelength | 400–700 nm | 1460–1625 nm |
Bandwidth | 320 THz | 20.9 THz |
System complexity | Low | High |
Coverage area | 3 m | <10 m |
System cost | Low | High |
Power consumption | High | Low (<10 mW) |
Maximum achievable rate | 46.4 Gbit/s [31] | >112 Gbit/s [23] |
Infrastructure | Shared LED illumination | Fiber |
Safety | Penetrate eyes; power << 1 mW | Does not penetrate eyes; power < 10 mW |
Direction | low directional | high directional |
3. Indoor OWC Key Technologies
3.1. Key Technologies in VLC
3.1.1. WDM Based on Multi-Color LEDs
3.1.2. Multi-Input-Multi-Output (MIMO)
3.1.3. CSK
3.2. Beam-Steered NIR Optical Communication Technologies
3.2.1. Passive Beam-Steering Devices
3.2.2. Active Beam-Steering Devices
4. NLOS-OWC System Enabled by Beam-Steering with SLM for Multi-User Indoor Access
5. Future Challenges and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.-Y.; Wang, J.-B.; Chen, M.; Tang, Y.; Zhang, Y. Outage Analysis for Relay-Aided Free-Space Optical Communications Over Turbulence Channels With Nonzero Boresight Pointing Errors. IEEE Photonics J. 2014, 6, 7901815. [Google Scholar]
- Wu, L.; Han, Y.; Li, Z.; Zhang, Y.; Fu, H.Y. 12 Gbit/s indoor optical wireless communication system with ultrafast beam-steering using tunable VCSEL. Opt. Express 2022, 30, 15049–15059. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Nascimento, J.L.; Monteiro, P.P.; Guiomar, F.P. Highly Reliable Outdoor 400G FSO Transmission Enabled by ANN Channel Estimation. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6–10 March 2022; pp. 1–3. [Google Scholar]
- Wang, G.; Habib, U.; Yan, Z.; Gomes, N.J.; Sui, Q.; Wang, J.; Zhang, L.; Wang, C. Highly Efficient Optical Beam Steering Using an In-Fiber Diffraction Grating for Full Duplex Indoor Optical Wireless Communication. J. Light. Technol. 2018, 36, 4618–4625. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Hasan, M.K.; Shahjalal, M.; Hossan, M.T.; Jang, Y.M. Optical wireless hybrid networks: Trends, opportunities, challenges, and research directions. IEEE Commun. Surv. Tutor. 2020, 22, 930–966. [Google Scholar] [CrossRef]
- Mapunda, G.A.; Ramogomana, R.; Marata, L. Indoor visible light communication: A tutorial and survey. Wirel. Commun. Mob. Comput. 2020, 2020, 8881305. [Google Scholar] [CrossRef]
- Koonen, T. Indoor Optical Wireless Systems: Technology, Trends, and Applications. J. Light. Technol. 2018, 36, 1459–1467. [Google Scholar] [CrossRef]
- Koonen, T.; Mekonnen, K.; Cao, Z.; Huijskens, F.; Pham, N.Q.; Tangdiongga, E. Ultra-high-capacity wireless communication by means of steered narrow optical beams. Philos. Trans. R. Soc. A 2020, 378, 20190192. [Google Scholar] [CrossRef]
- Rehman, S.; Ullah, S.; Chong, P.; Yongchareon, S.; Komosny, D. Visible Light Communication: A System Perspective—Overview and Challenges. Sensors 2019, 19, 1153. [Google Scholar] [CrossRef]
- Mendes Matheus, L.E.; Borges Vieira, A.; Vieira, L.F.M.; Vieira, M.A.M.; Gnawali, O. Visible Light Communication: Concepts, Applications and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3204–3237. [Google Scholar] [CrossRef]
- Loureiro, P.A.; Guiomar, F.P.; Monteiro, P.P. Visible Light Communications: A Survey on Recent High-Capacity Demonstrations and Digital Modulation Techniques. Photonics 2023, 10, 993. [Google Scholar] [CrossRef]
- Wang, K. Indoor Infrared Optical Wireless Communications: Systems and Integration, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Rondelez, N.; Ryckaert, W.; Meuret, Y. Compact illumination system with variable beam direction and beam divergence. Light. Res. Technol. 2021, 53, 345–358. [Google Scholar] [CrossRef]
- Bian, R.; Tavakkolnia, I.; Haas, H. 15.73 Gb/s visible light communication with off-the-shelf LEDs. J. Light. Technol. 2019, 37, 2418–2424. [Google Scholar] [CrossRef]
- Cossu, G.; Khalid, A.M.; Choudhury, P.; Corsini, R.; Ciaramella, E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Express 2012, 20, B501–B506. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, F.; Shi, M.; Chi, N.; Liu, J.; Jiang, F. 10.72Gb/s Visible Light Communication System Based On Single Packaged RGBYC LED Utilizing QAM-DMT Modulation with Hardware Pre-Equalization. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Mathias, L.C.; e Souza, A.R.C.; Abrão, T. Wavelength widths of optical filters for optimum SINR in WDM-VLC systems. Appl. Opt. 2020, 59, 5615–5624. [Google Scholar] [CrossRef]
- Dong, F.; O’Brien, D. High-speed adaptive MIMO-VLC system with neural network. J. Light. Technol. 2022, 40, 5530–5540. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, L.; Huang, X. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer. IEEE Photonics J. 2015, 7, 7904507. [Google Scholar]
- Kahn, J.M.; Barry, J.R. Wireless infrared communications. Proc. IEEE 1997, 85, 265–298. [Google Scholar] [CrossRef]
- Nirmalathas, T.A.; Song, T.; Edirisinghe, S. Gigabit/s Optical Wireless Access and Indoor Networks. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Yu, S.; Luo, M.; Li, X. Recent progress in an ‘ultra-high speed, ultra-large capacity, ultra-long distance’ optical transmission system. Chin. Opt. Lett. 2016, 14, 120003. [Google Scholar]
- Koonen, T.; Gomez-Agis, F.; Huijskens, F. High-capacity optical wireless communication using two-dimensional IR beam steering. J. Light. Technol. 2018, 36, 4486–4493. [Google Scholar] [CrossRef]
- Laser, L.E.D. The new edition of the international laser product safety standard IEC 60825-1. Laser 2017, 43, 2882. [Google Scholar]
- MacIsaac, D. Green laser safety. Phys. Teach. 2017, 55, 446. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, X.; Osnabrugge, G. Reconfigurable beam system for non-line-of-sight free-space optical communication. Light Sci. Appl. 2019, 8, 69. [Google Scholar] [CrossRef]
- Chen, L.; Oh, C.W.; Lee, J. Digital-filter-aided crosstalk-mitigation for a high spatial resolution AWGR-based 2D IR beam-steered indoor optical wireless communication system. Opt. Express 2023, 31, 10570–10585. [Google Scholar] [CrossRef]
- Li, Z.; Zang, Z.; Wei, Z. Multi-user accessible indoor infrared optical wireless communication systems employing VIPA-based 2D optical beam-steering technique. Opt. Express 2021, 29, 20175–20189. [Google Scholar] [CrossRef]
- Roberts, R.D.; Rajagopal, S.; Lim, S.-K. IEEE 802.15.7 physical layer summary. In Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 1 March 2012. [Google Scholar]
- Perahia, E. IEEE 802.11n Development: History, Process, and Technology. IEEE Commun. Mag. 2008, 46, 48–55. [Google Scholar] [CrossRef]
- Hu, J.; Hu, F.; Jia, J.; Li, G.; Shi, J.; Zhang, J.; Li, Z.; Chi, N.; Yu, S.; Shen, C. 46.4 Gbps visible light communication system utilizing a compact tricolor laser transmitter. Opt. Express 2022, 30, 4365–4373. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Chi, N.; Yu, J.; Shang, H. Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Opt. Express 2013, 21, 1203–1208. [Google Scholar] [CrossRef]
- Wu, H.; Wong, S.C.; Chi, K.T. Single-phase LED drivers with minimal power processing, constant output current, input power factor correction, and without electrolytic capacitor. IEEE Trans. Power Electron. 2017, 33, 6159–6170. [Google Scholar] [CrossRef]
- Zhong, X.; Chen, C.; Fu, S. Generalized spatial multiplexing for optical wireless communication systems. In Proceedings of the 2020 12th International Conference on Advanced Infocomm Technology (ICAIT), Macao, China, 23–25 November 2020. [Google Scholar]
- Wei, C.C.; Wu, F.M.; Chen, Z.Y. LED-based visible light communication in a practical indoor interfered environment employing DMT and STBC. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 9–13 March 2014; pp. 1–3. [Google Scholar]
- Fath, T.; Haas, H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun. 2012, 61, 733–742. [Google Scholar] [CrossRef]
- Gupta, A.K.; Chockalingam, A. Performance of MIMO modulation schemes with imaging receivers in visible light communication. J. Light. Technol. 2018, 36, 1912–1927. [Google Scholar] [CrossRef]
- Mmbaga, P.F.; Thompson, J.; Haas, H. Performance analysis of indoor diffuse VLC MIMO channels using angular diversity detectors. J. Light. Technol. 2016, 34, 1254–1266. [Google Scholar] [CrossRef]
- Deng, L.; Fan, Y. Analysis of channel correlation and channel capacity for indoor MIMO visible light communication systems. Appl. Opt. 2020, 59, 4672–4684. [Google Scholar] [CrossRef]
- Tran, N.-A.; Luong, D.A.; Thang, T.C.; Pham, A.T. Performance analysis of indoor MIMO visible light communication systems. In Proceedings of the 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE), Danang, Vietnam, 30 July–1 August 2014; pp. 60–64. [Google Scholar]
- Gunawan, W.H.; Chow, C.W.; Liu, Y. Embedded Orthogonal-Frequency-Division-Multiplexing (OFDM) to Color-Shift-Keying (CSK) Modulation for Laser-Diode based Visible Light Communication (VLC). In Proceedings of the Optical Fiber Communication Conference 2021, Washington, DC, USA, 6–11 June 2021. F1A. 3. [Google Scholar]
- 802.15.7-2018; IEEE Standard for Local and Metropolitan Area Networks—Part 15.7: Short-Range Optical Wireless Communications. IEEE Standard: New York, NY, USA, 2019; pp. 1–407.
- Pepe, A.; Wei, Z.; Fu, H.Y. Heuristic, machine learning approach to 8-CSK decision regions in RGB-LED visible light communication. OSA Contin. 2020, 3, 473–482. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Oh, C.W.; Cao, Z.; Tangdiongga, E. Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks. Opt. Express 2016, 24, 19211–19227. [Google Scholar] [CrossRef]
- Koonen, T.; Gomez-Agis, F.; Cao, Z.; Mekonnen, K.; Huijskens, F.; Tangdiongga, E. Indoor ultra-high capacity optical wireless communication using steerable infrared beams. In Proceedings of the 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, China, 23–26 October 2017; pp. 1–4. [Google Scholar]
- Khalid, A.M.; Koonen, A.M.J.; Oh, C.W.; Cao, Z.; Mekonnen, K.A.; Tangdiongga, E. 10 Gbps indoor optical wireless communication employing 2D passive beam steering based on arrayed waveguide gratings. In Proceedings of the 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM), Newport Beach, CA, USA, 11–13 July 2016; pp. 134–135. [Google Scholar]
- Wu, P.C.; Pala, R.A.; Kafaie Shirmanesh, G.; Cheng, W.H.; Sokhoyan, R.; Grajower, M.; Alam, M.Z.; Lee, D.; Atwater, H.A. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 2019, 10, 3654. [Google Scholar] [CrossRef]
- Huang, J.; Li, C.; Lei, Y.; Yang, L.; Xiang, Y.; Curto, A.G.; Li, Z.; Guo, L.; Cao, Z.; Hao, Y.; et al. A 20-Gbps Beam-Steered Infrared Wireless Link Enabled by a Passively Field-Programmable Metasurface. Laser Photonics Rev. 2021, 15, 2000266. [Google Scholar] [CrossRef]
- Arancibia, N.O.P.; Gibson, S.; Tsao, T.C. Adaptive control of MEMS mirrors for beam steering. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 13–19 November 2004; pp. 71–80. [Google Scholar]
- Wang, X.; Su, X.; Liu, G.; Han, J.; Wang, R.; Wang, K. Laser beam jitter control of the link in free space optical communication systems. Opt. Express 2021, 29, 41582–41599. [Google Scholar] [CrossRef]
- Čierny, O.; Serra, P.; Cahoy, K. Beaconless pointing and tracking for bidirectional optical links using MEMS mirror nutation. In Proceedings of the Free-Space Laser Communications XXXIII, SPIE LASE, Online, 6–12 March 2021; Volume 11678, pp. 83–94. [Google Scholar]
- Goldman, D.A.; Serra, P.; Kacker, S.; Benney, L.; Vresilovic, D.; Spector, S.J.; Cahoy, K.; Wachs, J.S. MOEMS-based lens-assisted beam steering for free-space optical communications. J. Light. Technol. 2023, 41, 2675–2690. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, Z.; Wang, L.; Xiong, B.; Sun, C.; Wang, J.; Li, H.; Han, Y.; Luo, Y. A single-chip multi-beam steering optical phased array: Design rules and simulations. Opt. Express 2021, 29, 7049–7059. [Google Scholar] [CrossRef]
- Wang, K.; Yuan, Z.; Wong, E.; Alameh, K.; Li, H.; Sithamparanathan, K.; Skafidas, E. Experimental demonstration of indoor infrared optical wireless communications with a silicon photonic integrated circuit. J. Light. Technol. 2018, 37, 619–626. [Google Scholar] [CrossRef]
- Chung, S.W.; Abediasl, H.; Hashemi, H. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J. Solid-State Circuits 2017, 53, 275–296. [Google Scholar] [CrossRef]
- Miller, S.A.; Chang, Y.C.; Phare, C.T.; Shin, M.C.; Zadka, M.; Roberts, S.P.; Stern, B.; Ji, X.; Mohanty, A.; Gordillo, O.A.J.; et al. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica 2020, 7, 3–6. [Google Scholar] [CrossRef]
- Poulton, C.V.; Byrd, M.J.; Russo, P.; Timurdogan, E.; Khandaker, M.; Vermeulen, D.; Watts, M.R. Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 7700108. [Google Scholar] [CrossRef]
- Li, Y.; Chen, B.; Na, Q.; Tao, M.; Liu, X.; Zhi, Z.; Peng, T.; Li, X.; Luo, X.; Lo, G.Q.; et al. High-data-rate and wide-steering-range optical wireless communication via nonuniform-space optical phased array. J. Light. Technol. 2023, 41, 4933–4940. [Google Scholar] [CrossRef]
- Feng, F.; White, I.H.; Wilkinson, T.D. Free space communications with beam steering a two-electrode tapered laser diode using liquid-crystal SLM. J. Light. Technol. 2013, 31, 2001–2007. [Google Scholar] [CrossRef]
- Weng, H.; Wang, W.; Chen, Z.; Zhu, B.; Ni, W.; Yin, M.; Lu, R.; Cao, Z.; Li, Z.; Li, F. Non-line-of-sight optical wireless communication system enabled by wavefront shaping for multi-user indoor access. Opt. Lett. 2024, 49, 3082–3085. [Google Scholar] [CrossRef] [PubMed]
- Sejan, M.A.S.; Naik, R.P.; Lee, B.G.; Chung, W.-Y. A Bandwidth Efficient Hybrid Multilevel Pulse Width Modulation for Visible Light Communication System: Experimental and Theoretical Evaluation. IEEE Open J. Commun. Soc. 2022, 3, 1991–2004. [Google Scholar]
- Priol, R.L.; Hélard, M.; Haese, S.; Roy, S. Experimental Comparison of PAM and CAP Modulation for Visible Light Communication Under Illumination Constraints. IEEE Photonics J. 2022, 14, 7315811. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, L.; Li, Z.; Chen, C.J.; Wu, M.C.; Wang, L.; Fu, H.Y. Micro-LEDs Illuminate Visible Light Communication. IEEE Commun. Mag. 2022, 61, 108–114. [Google Scholar] [CrossRef]
- Chow, C.W.; Chang, Y.H.; Wei, L.Y.; Yeh, C.H.; Liu, Y. 26.228-Gbit/s RGBV visible light communication (VLC) with 2-m free space transmission. In Proceedings of the 2020 Opto-Electronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020; pp. 1–3. [Google Scholar]
- Li, Z.; Li, Y.; Zang, Z.; Han, Y.; Wu, L.; Li, M.; Li, Q.; Fu, H.Y. LiDAR integrated IR OWC system with the abilities of user localization and high-speed data transmission. Opt. Express 2022, 30, 20796–20808. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, H.; Wang, W.; Chen, Z.; Zhu, B.; Li, F. A Review of Indoor Optical Wireless Communication. Photonics 2024, 11, 722. https://doi.org/10.3390/photonics11080722
Weng H, Wang W, Chen Z, Zhu B, Li F. A Review of Indoor Optical Wireless Communication. Photonics. 2024; 11(8):722. https://doi.org/10.3390/photonics11080722
Chicago/Turabian StyleWeng, Huiyi, Wei Wang, Zhiwei Chen, Bowen Zhu, and Fan Li. 2024. "A Review of Indoor Optical Wireless Communication" Photonics 11, no. 8: 722. https://doi.org/10.3390/photonics11080722
APA StyleWeng, H., Wang, W., Chen, Z., Zhu, B., & Li, F. (2024). A Review of Indoor Optical Wireless Communication. Photonics, 11(8), 722. https://doi.org/10.3390/photonics11080722