Experimental Investigation on the Dynamics Characteristics of a Two-State Quantum Dot Laser under Optical Feedback
Abstract
1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishi, K.; Takemasa, K.; Sugawara, M.; Arakawa, Y. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1901007. [Google Scholar] [CrossRef]
- Wang, C.; Osinski, M.; Even, J.; Grillot, F. Phase-amplitude coupling characteristics in directly modulated quantum dot lasers. Appl. Phys. Lett. 2014, 105, 221114. [Google Scholar] [CrossRef]
- Huang, H.; Arsenijevic, D.; Schires, K.; Sadeev, T.; Bimberg, D.; Grillot, F. Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states. AIP Adv. 2016, 6, 125114. [Google Scholar] [CrossRef]
- Xu, P.F.; Yang, T.; Ji, H.M.; Cao, Y.L.; Gu, Y.X.; Liu, Y.; Ma, W.Q.; Wang, Z.G. Temperature-dependent modulation characteristics for 1.3 µm InAs/GaAs quantum dot lasers. J. Appl. Phys. 2010, 107, 013102. [Google Scholar] [CrossRef]
- Li, S.G.; Gong, Q.; Cao, C.F.; Wang, X.Z.; Chen, P.; Yue, L.; Liu, Q.B.; Wang, H.L.; Ma, C.H. Temperature dependent lasing characteristics of InAs/InP(100) quantum dot laser. Mater. Sci. Semicond. Process. 2012, 15, 86–90. [Google Scholar] [CrossRef]
- O’Brien, D.; Hegarty, S.P.; Huyet, G.; Uskov, A.V. Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt. Lett. 2004, 29, 1072–1074. [Google Scholar] [CrossRef]
- Azouigui, S.; Dagens, B.; Lelarge, F.; Provost, J.G.; Make, D.; Le Gouezigou, O.; Accard, A.; Martinez, A.; Merghem, K.; Grillot, F.; et al. Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 764–773. [Google Scholar] [CrossRef]
- Norman, J.C.; Jung, D.; Wan, Y.T.; Bowers, J.E. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics 2018, 3, 030901. [Google Scholar] [CrossRef]
- Grillot, F.; Norman, J.C.; Duan, J.N.; Zhang, Z.Y.; Dong, B.Z.; Huang, H.M.; Chow, W.W.; Bowers, J.E. Physics and applications of quantum dot lasers for silicon photonics. Nanophotonics 2020, 9, 1271–1286. [Google Scholar] [CrossRef]
- Tykalewicz, B.; Goulding, D.; Hegarty, S.P.; Huyet, G.; Byrne, D.; Phelan, R.; Kelleher, B. All-optical switching with a dual-state, single-section quantum dot laser via optical injection. Opt. Lett. 2014, 39, 4607–4610. [Google Scholar] [CrossRef]
- Breuer, S.; Elsasser, W.; Hopkinson, M. State-switched modelocking of two-segment quantum dot laser via self-electro-optical quantum dot absorber. Electron. Lett. 2010, 46, 161-U187. [Google Scholar] [CrossRef]
- Wang, C.; Raghunathan, R.; Schires, K.; Chan, S.C.; Lester, L.F.; Grillot, F. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation. Opt. Lett. 2016, 41, 1153–1156. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.F.; Wu, Z.M.; Yang, W.Y.; Hu, C.X.; Lin, X.D.; Jin, Y.H.; Dai, M.; Cui, B.; Yue, D.Z.; Xia, G.Q. Numerical simulations on narrow-linewidth photonic microwave generation based on a QD laser simultaneously subject to optical injection and optical feedback. Appl. Opt. 2020, 59, 2935–2941. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Jiang, Y.; Yu, Q.; Xu, J.; Zi, Y.J.; Li, J.H.; Lan, X.H.; Chen, N. All-optical microwave waveform transformation based on photonic temporal processors. Opt. Express 2022, 30, 10428–10442. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Mao, Y.F.; Li, Y.B.; Chen, G.C.; Lu, D.; Kan, Q.; Zhao, L.J. Frequency-tunable broadband microwave comb generation using an integrated mutually coupled DFB laser. IEEE Photonics Technol. Lett. 2020, 32, 1407–1410. [Google Scholar] [CrossRef]
- Luo, H.; Jiang, Y.; Dong, R.Y.; Tian, J.; Zi, Y.J.; Liu, H.F.; Wei, C.; Wang, R. Tunable single-mode microwave signal generation utilizing an all-optical coupled microwave oscillator. Opt. Express 2019, 27, 25829–25840. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Kovsh, A.R. Quantum dot diode lasers for optical communication systems. Quantum Electron. 2008, 38, 409–423. [Google Scholar] [CrossRef]
- Wang, H.; Lu, D.; Zhang, R.K.; Zhao, L.J. Photonic terahertz carrier generation using an optical feedback mode-lock laser diode. IEEE Photonics J. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Huang, H.M.; Duan, J.N.; Jung, D.; Liu, A.Y.; Zhang, Z.Y.; Norman, J.; Bowers, J.E.; Grillot, F. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B 2018, 35, 2780–2787. [Google Scholar] [CrossRef]
- Dong, B.Z.; Chen, J.D.; Lin, F.Y.; Norman, J.C.; Bowers, J.E.; Grillot, F. Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under longand short-cavity feedback conditions for photonic integrated circuits. Phys. Rev. A 2021, 103, 033509. [Google Scholar] [CrossRef]
- Salvide, M.F.; Masoller, C.; Torre, M.S. All-optical stochastic logic gate based on a VCSEL with tunable optical injection. IEEE J. Quantum Electron. 2013, 49, 886–893. [Google Scholar] [CrossRef]
- Zhukovsky, S.V.; Chigrin, D.N. Optical memory based on ultrafast wavelength switching in a bistable microlaser. Opt. Lett. 2009, 34, 3310–3312. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Okuma, T.; Kanno, K.; Uchida, A. Entropy rate of chaos in an optically injected semiconductor laser for physical random number generation. Opt. Express 2021, 29, 2442–2457. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Xia, G.Q.; Tang, X.; Wang, Y.B.; Wu, Z.M. Fast physical random bit generation based on a chaotic optical injection system with multi-path optical feedback. Appl. Opt. 2022, 61, 8354–8360. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.Z.; Wang, T.K.; Chen, Y.J.; Wu, Q.F.; Qiu, C.H.; Zeng, H.G.; Wang, Y.M.; Xi, J.T. Exploration of four-channel coherent optical chaotic secure communication with the rate of 400 Gb/s using photonic reservoir computing based on quantum dot spin-VCSELs. Photonics 2024, 11, 309. [Google Scholar] [CrossRef]
- Zhong, D.Z.; Zhao, K.K.; Hu, Y.L.; Zhang, J.B.; Deng, W.A.; Hou, P. Four-channels optical chaos secure communications with the rate of 400 Gb/s using optical reservoir computing based on two quantum dot spin-VCSELs. Opt. Commun. 2023, 529, 129109. [Google Scholar] [CrossRef]
- Li, Q.Z.; Wang, X.; Zhang, Z.Y.; Chen, H.M.; Huang, Y.Q.; Hou, C.C.; Wang, J.; Zhang, R.Y.; Ning, J.Q.; Min, J.H.; et al. Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity fabry-perot and distributed-feedback laser diodes. ACS Photonics 2018, 5, 1084–1093. [Google Scholar] [CrossRef]
- Viktorov, E.A.; Mandel, P.; Tanguy, Y.; Houlihan, J.; Huyet, G. Electron-hole asymmetry and two-state lasing in quantum dot lasers. Appl. Phys. Lett. 2005, 87, 053113. [Google Scholar] [CrossRef]
- Tykalewicz, B.; Goulding, D.; Hegarty, S.P.; Huyet, G.; Dubinkin, I.; Fedorov, N.; Erneux, T.; Viktorov, E.A.; Kelleher, B. Optically induced hysteresis in a two-state quantum dot laser. Opt. Lett. 2016, 41, 1034–1037. [Google Scholar] [CrossRef]
- Meinecke, S.; Lingnau, B.; Rohm, A.; Ludge, K. Stability of optically injected two-state quantum-dot lasers. Ann. Phys. 2017, 529, 1600279. [Google Scholar] [CrossRef]
- Lin, L.C.; Chen, C.Y.; Huang, H.M.; Arsenijevic, D.; Bimberg, D.; Grillot, F.; Lin, F.Y. Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states. Opt. Lett. 2018, 43, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Wang, Z.H.; Wei, W.Q.; Wang, T.; Zhang, J.J. Sole excited-state InAs quantum dot laser on silicon with strong feedback resistance. Front. Mater. 2021, 8, 648049. [Google Scholar]
- Wang, C.; Lingnau, B.; Lüdge, K.; Even, J.; Grillot, F. Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state. IEEE J. Quantum Electron. 2014, 50, 723–731. [Google Scholar] [CrossRef]
- O’Brien, D.; Hegarty, S.P.; Huyet, G.; McInerney, J.G.; Kettler, T.; Laemmlin, M.; Bimberg, D.; Ustinov, V.M.; Zhukov, A.E.; Mikhrin, S.S.; et al. Feedback sensitivity of 1.3 mu m InAs/GaAs quantum dot lasers. Electron. Lett. 2003, 39, 1819–1820. [Google Scholar] [CrossRef]
- Stevens, B.J.; Childs, D.T.D.; Shahid, H.; Hogg, R.A. Direct modulation of excited state quantum dot lasers. Appl. Phys. Lett. 2009, 95, 061101. [Google Scholar] [CrossRef]
- Dehghaninejad, A.; Sheikhey, M.M.; Baghban, H. Dynamic behavior of injection-locked two-state quantum dot lasers. J. Opt. Soc. Am. B 2019, 36, 1518–1524. [Google Scholar] [CrossRef]
- Virte, M.; Panajotov, K.; Sciamanna, M. Mode competition induced by optical feedback in two-color quantum dot lasers. IEEE J. Quantum Electron. 2013, 49, 578–585. [Google Scholar] [CrossRef]
- Virte, M.; Pawlus, R.; Sciamanna, M.; Panajotov, K.; Breuer, S. Energy exchange between modes in a multimode two-color quantum dot laser with optical feedback. Opt. Lett. 2016, 41, 3205–3208. [Google Scholar] [CrossRef]
- Pawlus, R.; Breuer, S.; Virte, M. Relative intensity noise reduction in a dual-state quantum-dot laser by optical feedback. Opt. Lett. 2017, 42, 4259–4262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Xia, G.-Q.; Lin, X.; Fang, R.; Wang, Q.; Zhang, F.; Wu, Z.-M. Experimental Investigation on the Dynamics Characteristics of a Two-State Quantum Dot Laser under Optical Feedback. Photonics 2024, 11, 692. https://doi.org/10.3390/photonics11080692
Zheng Y, Xia G-Q, Lin X, Fang R, Wang Q, Zhang F, Wu Z-M. Experimental Investigation on the Dynamics Characteristics of a Two-State Quantum Dot Laser under Optical Feedback. Photonics. 2024; 11(8):692. https://doi.org/10.3390/photonics11080692
Chicago/Turabian StyleZheng, Yanfei, Guang-Qiong Xia, Xiaodong Lin, Ruilin Fang, Qingqing Wang, Fengling Zhang, and Zheng-Mao Wu. 2024. "Experimental Investigation on the Dynamics Characteristics of a Two-State Quantum Dot Laser under Optical Feedback" Photonics 11, no. 8: 692. https://doi.org/10.3390/photonics11080692
APA StyleZheng, Y., Xia, G.-Q., Lin, X., Fang, R., Wang, Q., Zhang, F., & Wu, Z.-M. (2024). Experimental Investigation on the Dynamics Characteristics of a Two-State Quantum Dot Laser under Optical Feedback. Photonics, 11(8), 692. https://doi.org/10.3390/photonics11080692