Experimental Investigation on the Dynamics Characteristics of a Two-State Quantum Dot Laser under Optical Feedback
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishi, K.; Takemasa, K.; Sugawara, M.; Arakawa, Y. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1901007. [Google Scholar] [CrossRef]
- Wang, C.; Osinski, M.; Even, J.; Grillot, F. Phase-amplitude coupling characteristics in directly modulated quantum dot lasers. Appl. Phys. Lett. 2014, 105, 221114. [Google Scholar] [CrossRef]
- Huang, H.; Arsenijevic, D.; Schires, K.; Sadeev, T.; Bimberg, D.; Grillot, F. Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states. AIP Adv. 2016, 6, 125114. [Google Scholar] [CrossRef]
- Xu, P.F.; Yang, T.; Ji, H.M.; Cao, Y.L.; Gu, Y.X.; Liu, Y.; Ma, W.Q.; Wang, Z.G. Temperature-dependent modulation characteristics for 1.3 µm InAs/GaAs quantum dot lasers. J. Appl. Phys. 2010, 107, 013102. [Google Scholar] [CrossRef]
- Li, S.G.; Gong, Q.; Cao, C.F.; Wang, X.Z.; Chen, P.; Yue, L.; Liu, Q.B.; Wang, H.L.; Ma, C.H. Temperature dependent lasing characteristics of InAs/InP(100) quantum dot laser. Mater. Sci. Semicond. Process. 2012, 15, 86–90. [Google Scholar] [CrossRef]
- O’Brien, D.; Hegarty, S.P.; Huyet, G.; Uskov, A.V. Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt. Lett. 2004, 29, 1072–1074. [Google Scholar] [CrossRef]
- Azouigui, S.; Dagens, B.; Lelarge, F.; Provost, J.G.; Make, D.; Le Gouezigou, O.; Accard, A.; Martinez, A.; Merghem, K.; Grillot, F.; et al. Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 764–773. [Google Scholar] [CrossRef]
- Norman, J.C.; Jung, D.; Wan, Y.T.; Bowers, J.E. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics 2018, 3, 030901. [Google Scholar] [CrossRef]
- Grillot, F.; Norman, J.C.; Duan, J.N.; Zhang, Z.Y.; Dong, B.Z.; Huang, H.M.; Chow, W.W.; Bowers, J.E. Physics and applications of quantum dot lasers for silicon photonics. Nanophotonics 2020, 9, 1271–1286. [Google Scholar] [CrossRef]
- Tykalewicz, B.; Goulding, D.; Hegarty, S.P.; Huyet, G.; Byrne, D.; Phelan, R.; Kelleher, B. All-optical switching with a dual-state, single-section quantum dot laser via optical injection. Opt. Lett. 2014, 39, 4607–4610. [Google Scholar] [CrossRef]
- Breuer, S.; Elsasser, W.; Hopkinson, M. State-switched modelocking of two-segment quantum dot laser via self-electro-optical quantum dot absorber. Electron. Lett. 2010, 46, 161-U187. [Google Scholar] [CrossRef]
- Wang, C.; Raghunathan, R.; Schires, K.; Chan, S.C.; Lester, L.F.; Grillot, F. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation. Opt. Lett. 2016, 41, 1153–1156. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.F.; Wu, Z.M.; Yang, W.Y.; Hu, C.X.; Lin, X.D.; Jin, Y.H.; Dai, M.; Cui, B.; Yue, D.Z.; Xia, G.Q. Numerical simulations on narrow-linewidth photonic microwave generation based on a QD laser simultaneously subject to optical injection and optical feedback. Appl. Opt. 2020, 59, 2935–2941. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Jiang, Y.; Yu, Q.; Xu, J.; Zi, Y.J.; Li, J.H.; Lan, X.H.; Chen, N. All-optical microwave waveform transformation based on photonic temporal processors. Opt. Express 2022, 30, 10428–10442. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Mao, Y.F.; Li, Y.B.; Chen, G.C.; Lu, D.; Kan, Q.; Zhao, L.J. Frequency-tunable broadband microwave comb generation using an integrated mutually coupled DFB laser. IEEE Photonics Technol. Lett. 2020, 32, 1407–1410. [Google Scholar] [CrossRef]
- Luo, H.; Jiang, Y.; Dong, R.Y.; Tian, J.; Zi, Y.J.; Liu, H.F.; Wei, C.; Wang, R. Tunable single-mode microwave signal generation utilizing an all-optical coupled microwave oscillator. Opt. Express 2019, 27, 25829–25840. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Kovsh, A.R. Quantum dot diode lasers for optical communication systems. Quantum Electron. 2008, 38, 409–423. [Google Scholar] [CrossRef]
- Wang, H.; Lu, D.; Zhang, R.K.; Zhao, L.J. Photonic terahertz carrier generation using an optical feedback mode-lock laser diode. IEEE Photonics J. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Huang, H.M.; Duan, J.N.; Jung, D.; Liu, A.Y.; Zhang, Z.Y.; Norman, J.; Bowers, J.E.; Grillot, F. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B 2018, 35, 2780–2787. [Google Scholar] [CrossRef]
- Dong, B.Z.; Chen, J.D.; Lin, F.Y.; Norman, J.C.; Bowers, J.E.; Grillot, F. Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under longand short-cavity feedback conditions for photonic integrated circuits. Phys. Rev. A 2021, 103, 033509. [Google Scholar] [CrossRef]
- Salvide, M.F.; Masoller, C.; Torre, M.S. All-optical stochastic logic gate based on a VCSEL with tunable optical injection. IEEE J. Quantum Electron. 2013, 49, 886–893. [Google Scholar] [CrossRef]
- Zhukovsky, S.V.; Chigrin, D.N. Optical memory based on ultrafast wavelength switching in a bistable microlaser. Opt. Lett. 2009, 34, 3310–3312. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Okuma, T.; Kanno, K.; Uchida, A. Entropy rate of chaos in an optically injected semiconductor laser for physical random number generation. Opt. Express 2021, 29, 2442–2457. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Xia, G.Q.; Tang, X.; Wang, Y.B.; Wu, Z.M. Fast physical random bit generation based on a chaotic optical injection system with multi-path optical feedback. Appl. Opt. 2022, 61, 8354–8360. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.Z.; Wang, T.K.; Chen, Y.J.; Wu, Q.F.; Qiu, C.H.; Zeng, H.G.; Wang, Y.M.; Xi, J.T. Exploration of four-channel coherent optical chaotic secure communication with the rate of 400 Gb/s using photonic reservoir computing based on quantum dot spin-VCSELs. Photonics 2024, 11, 309. [Google Scholar] [CrossRef]
- Zhong, D.Z.; Zhao, K.K.; Hu, Y.L.; Zhang, J.B.; Deng, W.A.; Hou, P. Four-channels optical chaos secure communications with the rate of 400 Gb/s using optical reservoir computing based on two quantum dot spin-VCSELs. Opt. Commun. 2023, 529, 129109. [Google Scholar] [CrossRef]
- Li, Q.Z.; Wang, X.; Zhang, Z.Y.; Chen, H.M.; Huang, Y.Q.; Hou, C.C.; Wang, J.; Zhang, R.Y.; Ning, J.Q.; Min, J.H.; et al. Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity fabry-perot and distributed-feedback laser diodes. ACS Photonics 2018, 5, 1084–1093. [Google Scholar] [CrossRef]
- Viktorov, E.A.; Mandel, P.; Tanguy, Y.; Houlihan, J.; Huyet, G. Electron-hole asymmetry and two-state lasing in quantum dot lasers. Appl. Phys. Lett. 2005, 87, 053113. [Google Scholar] [CrossRef]
- Tykalewicz, B.; Goulding, D.; Hegarty, S.P.; Huyet, G.; Dubinkin, I.; Fedorov, N.; Erneux, T.; Viktorov, E.A.; Kelleher, B. Optically induced hysteresis in a two-state quantum dot laser. Opt. Lett. 2016, 41, 1034–1037. [Google Scholar] [CrossRef]
- Meinecke, S.; Lingnau, B.; Rohm, A.; Ludge, K. Stability of optically injected two-state quantum-dot lasers. Ann. Phys. 2017, 529, 1600279. [Google Scholar] [CrossRef]
- Lin, L.C.; Chen, C.Y.; Huang, H.M.; Arsenijevic, D.; Bimberg, D.; Grillot, F.; Lin, F.Y. Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states. Opt. Lett. 2018, 43, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Wang, Z.H.; Wei, W.Q.; Wang, T.; Zhang, J.J. Sole excited-state InAs quantum dot laser on silicon with strong feedback resistance. Front. Mater. 2021, 8, 648049. [Google Scholar]
- Wang, C.; Lingnau, B.; Lüdge, K.; Even, J.; Grillot, F. Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state. IEEE J. Quantum Electron. 2014, 50, 723–731. [Google Scholar] [CrossRef]
- O’Brien, D.; Hegarty, S.P.; Huyet, G.; McInerney, J.G.; Kettler, T.; Laemmlin, M.; Bimberg, D.; Ustinov, V.M.; Zhukov, A.E.; Mikhrin, S.S.; et al. Feedback sensitivity of 1.3 mu m InAs/GaAs quantum dot lasers. Electron. Lett. 2003, 39, 1819–1820. [Google Scholar] [CrossRef]
- Stevens, B.J.; Childs, D.T.D.; Shahid, H.; Hogg, R.A. Direct modulation of excited state quantum dot lasers. Appl. Phys. Lett. 2009, 95, 061101. [Google Scholar] [CrossRef]
- Dehghaninejad, A.; Sheikhey, M.M.; Baghban, H. Dynamic behavior of injection-locked two-state quantum dot lasers. J. Opt. Soc. Am. B 2019, 36, 1518–1524. [Google Scholar] [CrossRef]
- Virte, M.; Panajotov, K.; Sciamanna, M. Mode competition induced by optical feedback in two-color quantum dot lasers. IEEE J. Quantum Electron. 2013, 49, 578–585. [Google Scholar] [CrossRef]
- Virte, M.; Pawlus, R.; Sciamanna, M.; Panajotov, K.; Breuer, S. Energy exchange between modes in a multimode two-color quantum dot laser with optical feedback. Opt. Lett. 2016, 41, 3205–3208. [Google Scholar] [CrossRef]
- Pawlus, R.; Breuer, S.; Virte, M. Relative intensity noise reduction in a dual-state quantum-dot laser by optical feedback. Opt. Lett. 2017, 42, 4259–4262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Xia, G.-Q.; Lin, X.; Fang, R.; Wang, Q.; Zhang, F.; Wu, Z.-M. Experimental Investigation on the Dynamics Characteristics of a Two-State Quantum Dot Laser under Optical Feedback. Photonics 2024, 11, 692. https://doi.org/10.3390/photonics11080692
Zheng Y, Xia G-Q, Lin X, Fang R, Wang Q, Zhang F, Wu Z-M. Experimental Investigation on the Dynamics Characteristics of a Two-State Quantum Dot Laser under Optical Feedback. Photonics. 2024; 11(8):692. https://doi.org/10.3390/photonics11080692
Chicago/Turabian StyleZheng, Yanfei, Guang-Qiong Xia, Xiaodong Lin, Ruilin Fang, Qingqing Wang, Fengling Zhang, and Zheng-Mao Wu. 2024. "Experimental Investigation on the Dynamics Characteristics of a Two-State Quantum Dot Laser under Optical Feedback" Photonics 11, no. 8: 692. https://doi.org/10.3390/photonics11080692
APA StyleZheng, Y., Xia, G. -Q., Lin, X., Fang, R., Wang, Q., Zhang, F., & Wu, Z. -M. (2024). Experimental Investigation on the Dynamics Characteristics of a Two-State Quantum Dot Laser under Optical Feedback. Photonics, 11(8), 692. https://doi.org/10.3390/photonics11080692