Impact of Optical-to-Electrical Conversion on the Design of an End-to-End Learning RGB-LED-Based Visible Light Communication System
Abstract
:1. Introduction
2. Signal Conversions and System Design in VLC
2.1. Signal Conversions
2.2. CSK-Based System Design
3. CSK-Based VLC System Design Using Neural Networks
3.1. Autoencoder Design
3.1.1. Hyperparameters
3.1.2. Cost Function
3.2. Autoencoder Simulation Framework
3.2.1. Transmitter
3.2.2. Channel
3.2.3. Receiver
4. System Configuration and Evaluation Criteria
4.1. Setup
- CSK-VLC-AE (baseline): This scenario serves as a baseline, employing a maximum-likelihood detector to identify data symbols in the RGB channels without considering optical-to-electrical (O/E) conversion effects. This ideal case helps establish a performance benchmark under optimal conditions.
- CSK-VLC-AE with O/E: This scenario is similar to the baseline but includes the impact of O/E conversion at the receiver, using the same ML detection method. This comparison highlights the effects of O/E conversion on system performance.
- CSK-VLC-AE with SPD: Here, we implement a system using a single-photodiode (SPD) detector, which inherently includes O/E conversion. This setup is crucial for understanding the performance trade-offs when employing a cost-effective, simplified detector configuration.
- CSK-VLC with O/E (traditional non-autoencoder system): This scenario compares our autoencoder approach with a traditional VLC system using CSK modulation and ML detection that includes O/E conversion. This comparison serves as a critical benchmark to evaluate the advantages of integrating autoencoders into VLC systems.
4.2. Performance Metrics
4.3. Processing Complexity
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khalighi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Qin, Z.; Ye, H.; Li, G.Y.; Juang, B.-H.F. Deep Learning in Physical Layer Communications. IEEE Wirel. Commun. 2019, 26, 93–99. [Google Scholar] [CrossRef]
- An, Y.; Wang, S.; Zhao, L.; Ji, Z.; Ganchev, I. A Learning-Based End-to-End Wireless Communication System Utilizing a Deep Neural Network Channel Module. IEEE Access 2023, 11, 17441–17453. [Google Scholar] [CrossRef]
- IEEE Std 802.15.7-2018 (Revision of IEEE Std 802.15.7-2011); IEEE Standard for Local and Metropolitan Area Networks—-Part 15.7: Short-Range Optical Wireless Communications. IEEE: Piscataway, NJ, USA, 2019; pp. 1–407. [CrossRef]
- Das, P.; Kim, B.-Y.; Park, Y.; Kim, K.-D. A New Color Space Based Constellation Diagram and Modulation Scheme for Color Independent VLC. Adv. Electr. Comput. Eng. 2012, 12, 11–18. [Google Scholar] [CrossRef]
- Drost, R.J.; Sadler, B.M. Constellation Design for Color-Shift Keying Using Billiards Algorithms. In Proceedings of the 2010 IEEE Globecom Workshops, Miami, FL, USA, 6 December 2010; pp. 980–984. [Google Scholar] [CrossRef]
- Monteiro, E.; Hranilovic, S. Design and Implementation of Color-Shift Keying for Visible Light Communications. J. Light. Technol. 2014, 32, 2053–2060. [Google Scholar] [CrossRef]
- Monteiro, E.; Hranilovic, S. Constellation Design for Color-Shift Keying Using Interior Point Methods. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 1224–1228. [Google Scholar] [CrossRef]
- Liang, X.; Yuan, M.; Wang, J.; Ding, Z.; Jiang, M.; Zhao, C. Constellation Design Enhancement for Color-Shift Keying Modulation of Quadrichromatic LEDs in Visible Light Communications. J. Light. Technol. 2017, 35, 3650–3663. [Google Scholar] [CrossRef]
- IEEE 802.15.7-2011 and IEEE802.15.7r1, “IEEE 802.15 WPANTM”. Available online: https://www.ieee802.org/15/pub/IEEE%20802_15%20WPAN%2015_7%20Revision1%20Task%20Group.htm (accessed on 9 November 2022).
- Koonen, T. Indoor Optical Wireless Systems: Technology, Trends, and Applications. J. Light. Technol. 2018, 36, 1459–1467. [Google Scholar] [CrossRef]
- Matheus, L.E.M.; Vieira, A.B.; Vieira, L.F.M.; Vieira, M.A.M.; Gnawali, O. Visible Light Communication: Concepts, Applications and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3204–3237. [Google Scholar] [CrossRef]
- Căilean, A.-M.; Dimian, M. Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2681–2703. [Google Scholar] [CrossRef]
- Sklar, B.; Harris, F. Digital Communications: Fundamentals and Applications, 3rd ed.; Pearson: London, UK, 2020. [Google Scholar]
- Rappaport, T.S. Wireless Communications: Principles and Practice, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Djordjevic, I.B. Advanced Optical and Wireless Communications Systems; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Gagliardi, R.M.; Karp, S. Optical Communications, 2nd ed.; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Li, Z.; Shi, J.; Zhao, Y.; Li, G.; Chen, J.; Zhang, J.; Chi, N. Deep Learning Based End-to-End Visible Light Communication with an In-Band Channel Modeling Strategy. Opt. Express 2022, 30, 28905–28921. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, T.; Hoydis, J. An Introduction to Deep Learning for the Physical Layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575. [Google Scholar] [CrossRef]
- Chi, N.; Jia, J.; Hu, F.; Zhao, Y.; Zou, P. Challenges and Prospects of Machine Learning in Visible Light Communication. J. Commun. Inf. Netw. 2020, 5, 302–309. [Google Scholar] [CrossRef]
- Lee, H.; Lee, I.; Lee, S.H. Deep Learning Based Transceiver Design for Multi-Colored VLC Systems. Opt. Express 2018, 26, 6222–6238. [Google Scholar] [CrossRef] [PubMed]
- Pepe, A.; Wei, Z.; Fu, H.Y. Heuristic, Machine Learning Approach to 8-CSK Decision Regions in RGB-LED Visible Light Communication. OSA Contin. 2020, 3, 473–482. [Google Scholar] [CrossRef]
- Zhang, D.-F.; Yu, H.-Y.; Zhu, Y.-J.; Zhu, Z.-R. A Transceiver Design Based on an Autoencoder Network for Multi-Color VLC Systems. IEEE Photonics J. 2020, 12, 7902716. [Google Scholar] [CrossRef]
- Zou, C.; Yang, F. Dimming-Aware Deep Learning Approach for OOK-Based Visible Light Communication. J. Light. Technol. 2020, 38, 5733–5742. [Google Scholar] [CrossRef]
- Ulkar, M.G.; Baykas, T.; Pusane, A.E. VLCnet: Deep Learning Based End-to-End Visible Light Communication System. J. Light. Technol. 2020, 38, 5937–5948. [Google Scholar] [CrossRef]
- Shrivastava, S.; Chen, B.; Chen, C.; Wang, H.; Dai, M. Deep Q-Network Learning Based Downlink Resource Allocation for Hybrid RF/VLC Systems. IEEE Access 2020, 8, 149412–149434. [Google Scholar] [CrossRef]
- Mitra, R.; Bhatia, V. Chebyshev Polynomial-Based Adaptive Predistorter for Nonlinear LED Compensation in VLC. IEEE Photonics Technol. Lett. 2016, 28, 1053–1056. [Google Scholar] [CrossRef]
- Laakso, M.; Dowhuszko, A.A.; Wichman, R. Predistortion of OFDM Signals for VLC Systems Using Phosphor-Converted LEDs. In Proceedings of the 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), Oulu, Finland, 4–6 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Lizarraga, E.M.; Wayar, J.; Linares, M.F.; Dowhuszko, A.A. Effects of LED Non-linear Response and Waveform Settings on Multi-Cell VLC System Deployments. In Proceedings of the 2021 IEEE Latin-American Conference on Communications (LATINCOM), Santo Domingo, Dominican Republic, 17–19 November 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Hamamatsu. Si PIN Photodiodes (S1223 Series). Available online: https://www.hamamatsu.com/eu/en/product/optical-sensors/photodiodes/si-photodiodes/S1223-01.html (accessed on 1 December 2023).
- Wyszecki, G.; Stiles, W.S. Color Science; Wiley: New York, NY, USA, 1982; Volume 8. [Google Scholar]
- Luna-Rivera, J.M.; Suarez-Rodriguez, C.; Guerra, V.; Perez-Jimenez, R.; Rabadan, J.; Rufo, J. Low-Complexity CSK-based Visible Light Communications System. IET Optoelectron. 2015, 9, 191–198. [Google Scholar] [CrossRef]
- McCamy, C.S. Correlated Color Temperature as an Explicit Function of Chromaticity Coordinates. Color Res. Appl. 1992, 17, 142–144. [Google Scholar] [CrossRef]
Encoding Dimension | Set at , corresponding to the number of transmitting LEDs in our CSK-based VLC system. |
Hidden Layers | Two layers were determined to best balance performance and complexity. |
Nodes in Hidden Layers | Each layer has 4 nodes, except the final transmitter layer with 3 nodes, as established through iterative testing. |
Activation Function | The encoder employs the Exponential Linear Unit (ELU), and the decoder uses the Softmax function, suited for our multi-class scenario. |
Optimizer | The Adam optimizer was chosen for its adaptive learning rate capabilities. |
Epochs | Training iterations were consistently set to 10 for all combination of parameters. |
Batch Size | A mini-batch size of 100 ensured fast and efficient model convergence. |
Block | Layer Type | Outputs | Activation Function |
---|---|---|---|
Transmitter | One-Hot Mapping | M | NA |
Hidden | M | None | |
Hidden | N | ELU | |
Normalization | N | NA | |
RGB Channel | Noise | N | NA |
Receiver | Input | N | None |
Hidden | M | None | |
Hidden | M | Softmax | |
Arg. Max | M | NA |
Chromaticity | PD Responsivity | |
---|---|---|
Coordinates | (A/W) | |
Red ( nm) | ||
Green ( nm) | ||
Blue ( nm) | ||
CCT = 6500 K | ||
CIE 1931 (x,y) |
Layer (Output Dimensions) | Multiplications | Additions & Divisions | Function Exp (·) |
---|---|---|---|
Transmitter | |||
Noise (N) | - | - | - |
One-Hot Mapping (M) | - | - | - |
Hidden (M) | - | ||
Hidden (N) | N | ||
Normalization (N) | - | N | - |
RGB Chanel | |||
Noise (N) | - | - | - |
Receiver | |||
Noise (N) | - | - | - |
Input (N) | - | - | - |
Hidden (M) | - | ||
Hidden (M) | M | ||
Arg. Max (M) | - | - | - |
Method | CSK Constellation Sets | ||
---|---|---|---|
CSK-VLC-AE | {, , , } | ||
CSK-VLC-AE with O/E Conversion Loss | {, , , } | ||
CSK-VLC-AE with SPD | {, , , } |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna-Rivera, J.M.; Rabadan, J.; Rufo, J.; Gutierrez, C.A.; Guerra, V.; Perez-Jimenez, R. Impact of Optical-to-Electrical Conversion on the Design of an End-to-End Learning RGB-LED-Based Visible Light Communication System. Photonics 2024, 11, 616. https://doi.org/10.3390/photonics11070616
Luna-Rivera JM, Rabadan J, Rufo J, Gutierrez CA, Guerra V, Perez-Jimenez R. Impact of Optical-to-Electrical Conversion on the Design of an End-to-End Learning RGB-LED-Based Visible Light Communication System. Photonics. 2024; 11(7):616. https://doi.org/10.3390/photonics11070616
Chicago/Turabian StyleLuna-Rivera, Jose Martin, Jose Rabadan, Julio Rufo, Carlos A. Gutierrez, Victor Guerra, and Rafael Perez-Jimenez. 2024. "Impact of Optical-to-Electrical Conversion on the Design of an End-to-End Learning RGB-LED-Based Visible Light Communication System" Photonics 11, no. 7: 616. https://doi.org/10.3390/photonics11070616
APA StyleLuna-Rivera, J. M., Rabadan, J., Rufo, J., Gutierrez, C. A., Guerra, V., & Perez-Jimenez, R. (2024). Impact of Optical-to-Electrical Conversion on the Design of an End-to-End Learning RGB-LED-Based Visible Light Communication System. Photonics, 11(7), 616. https://doi.org/10.3390/photonics11070616