Plasmonic Focusing of a High-Order Cylindrical Vector Beam for On-Chip Detection
Abstract
:1. Introduction
2. Theoretical Model for Ideal Alignment
3. Analysis of Focusing with Deviation
- The offset value remains constant, and the angle is close to , which corresponds to observation points located closer to the upper and lower regions of the ring, where the deviation from ideal alignment is minimal.
- The angle remains constant, and the offset is small. This scenario reflects the intuitive understanding that a smaller offset ensures greater focusing accuracy, as the deviation from the alignment is minimized.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhandari, R. Polarization of Light and Topological Phases. Phys. Rep. 1997, 281, 1–64. [Google Scholar] [CrossRef]
- Stenholm, S. The Semiclassical Theory of Laser Cooling. Rev. Mod. Phys. 1986, 58, 699–739. [Google Scholar] [CrossRef]
- Rubinsztein-Dunlop, H.; Forbes, A.; Berry, M.V.; Dennis, M.R.; Andrews, D.L.; Mansuripur, M.; Denz, C.; Alpmann, C.; Banzer, P.; Bauer, T.; et al. Roadmap on Structured Light. J. Opt. 2016, 19, 013001. [Google Scholar] [CrossRef]
- Rashid, M.; Maragò, O.M.; Jones, P.H. Focusing of High Order Cylindrical Vector Beams. J. Opt. A Pure Appl. Opt. 2009, 11, 065204. [Google Scholar] [CrossRef]
- Khonina, S.N.; Karpeev, S.V.; Alferov, S.V.; Soifer, V.A. Generation of Cylindrical Vector Beams of High Orders Using Uniaxial Crystals. J. Opt. 2015, 17, 065001. [Google Scholar] [CrossRef]
- Zhan, Q. Cylindrical Vector Beams: From Mathematical Concepts to Applications. Adv. Opt. Photon. 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Prabakaran, K.; Rajesh, K.B.; Ravi, V. Tight Focusing Properties of Cylindrically Polarized Annular Multi-Gaussian Beam. Optik 2016, 127, 7537–7542. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, X.; Liu, Y.; Ling, X.; Luo, H.; Wen, S. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Opt. Lett. 2014, 39, 5274–5276. [Google Scholar] [CrossRef] [PubMed]
- Youngworth, K.S.; Brown, T.G. Focusing of High Numerical Aperture Cylindrical-Vector Beams. Opt. Express 2000, 7, 77–87. [Google Scholar] [CrossRef]
- Xiaoqiang, Z.; Ruishan, C.; Anting, W. Focusing Properties of Cylindrical Vector Vortex Beams. Opt. Commun. 2018, 414, 10–15. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Rodríguez-Fortuño, F.J.; Nori, F.; Zayats, A.V. Spin–Orbit Interactions of Light. Nat. Photonics 2015, 9, 796–808. [Google Scholar] [CrossRef]
- Šlevas, P.; Orlov, S. Creating an Array of Parallel Vortical Optical Needles. Photonics 2024, 11, 203. [Google Scholar] [CrossRef]
- Du, L.; Yang, A.; Zayats, A.V.; Yuan, X. Deep-Subwavelength Features of Photonic Skyrmions in a Confined Electromagnetic Field with Orbital Angular Momentum. Nat. Phys. 2019, 15, 650–654. [Google Scholar] [CrossRef]
- Lei, X.; Yang, A.; Shi, P.; Xie, Z.; Du, L.; Zayats, A.V.; Yuan, X. Photonic Spin Lattices: Symmetry Constraints for Skyrmion and Meron Topologies. Phys. Rev. Lett. 2021, 127, 237403. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Zhan, Q. Topological Charge Constrained Photonic Skyrmion Defects in Split Plasmonic Vortices. ACS Photonics 2023, 10, 3551–3557. [Google Scholar] [CrossRef]
- Droop, R.; Ehrmanntraut, D.; Denz, C. Transverse energy flow in an optical Skyrmionic Hopfion. Opt. Express 2023, 31, 11185–11191. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Du, L.; Yuan, X. Spin photonics: From transverse spin to photonic skyrmions. Nanophotonics 2021, 10, 3927–3943. [Google Scholar] [CrossRef]
- Kozawa, Y.; Sato, S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt. Express 2010, 18, 10828–10833. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Wan, C.; Huang, K.; Han, T.; Teng, J.; Ping, Y.S.; Qiu, C.-W. Creation of Vectorial Bottle-Hollow Beam Using Radially or Azimuthally Polarized Light. Opt. Lett. 2014, 39, 630–633. [Google Scholar] [CrossRef]
- Moradi, H.; Shahabadi, V.; Madadi, E.; Karimi, E.; Hajizadeh, F. Efficient Optical Trapping with Cylindrical Vector Beams. Opt. Express 2019, 27, 7266–7276. [Google Scholar] [CrossRef]
- Donato, M.G.; Vasi, S.; Sayed, R.; Jones, P.H.; Bonaccorso, F.; Ferrari, A.C.; Gucciardi, P.G.; Maragò, O.M. Optical Trapping of Nanotubes with Cylindrical Vector Beams. Opt. Lett. 2012, 37, 3381–3383. [Google Scholar] [CrossRef] [PubMed]
- Van, M.; Ushakova, K.; Bastiaansen, C.; Pereira, S.; Urbach, H.; Broer, D. Enhanced Lithographic Resolution Using Longitudinal Polarization State of Light. J. Micro/Nanolithography MEMS MOEMS 2015, 14, 043509. [Google Scholar] [CrossRef]
- Helseth, L.E. Roles of Polarization, Phase and Amplitude in Solid Immersion Lens Systems. Opt. Commun. 2001, 191, 161–172. [Google Scholar] [CrossRef]
- Li, X.; Cao, Y.; Gu, M. Superresolution-Focal-Volume Induced 3.0 Tbytes/Disk Capacity by Focusing a Radially Polarized Beam. Opt. Lett. 2011, 36, 2510–2512. [Google Scholar] [CrossRef] [PubMed]
- Lou, K.; Qian, S.-X.; Wang, X.-L.; Li, Y.; Gu, B.; Tu, C.; Wang, H.-T. Two-Dimensional Microstructures Induced by Femtosecond Vector Light Fields on Silicon. Opt. Express 2012, 20, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Guo, L.; Cheng, M.; Li, R. Scattering of a High-Order Vector Bessel Gaussian Beam by a Spherical Marine Aerosol. J. Quant. Spectrosc. Radiat. Transf. 2021, 265, 107552. [Google Scholar] [CrossRef]
- Tian, H.W.; Jiang, W.X.; Li, X.; Zhang, X.G.; Yang, Z.Y.; Cui, T.J. Generation of High-Order Orbital Angular Momentum Beams and Split Beams Simultaneously by Employing Anisotropic Coding Metasurfaces. J. Opt. 2019, 21, 065103. [Google Scholar] [CrossRef]
- Sancho-Parramon, J.; Bosch, S. Dark Modes and Fano Resonances in Plasmonic Clusters Excited by Cylindrical Vector Beams. ACS Nano 2012, 6, 8415–8423. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Shang, W.; Zhu, W.; Han, L.; Premaratne, M.; Mei, T.; Zhao, J. Cylindrical Vector Beam-Excited Frequency-Tunable Second Harmonic Generation in a Plasmonic Octamer. Photonics Res. 2018, 6, 157–161. [Google Scholar] [CrossRef]
- Das, T.; Schuller, J.A. Dark Modes and Field Enhancements in Dielectric Dimers Illuminated by Cylindrical Vector Beams. Phys. Rev. B 2017, 95, 201111. [Google Scholar] [CrossRef]
- Feng, F.; Si, G.; Min, C.; Yuan, X.; Somekh, M. On-Chip Plasmonic Spin-Hall Nanograting for Simultaneously Detecting Phase and Polarization Singularities. Light Sci. Appl. 2020, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Huang, K.; Liu, H.; Qin, F.; Mehmood, M.Q.; Xu, Z.; Hong, M.; Zhang, D.; Teng, J.; Danner, A.; et al. On-Chip Discrimination of Orbital Angular Momentum of Light with Plasmonic Nanoslits. Nanoscale 2016, 8, 2227–2233. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Abeysinghe, D.C.; Nelson, R.L.; Zhan, Q. Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination. Nano Lett. 2009, 9, 4320–4325. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Steele, J.M.; Srituravanich, W.; Pikus, Y.; Sun, C.; Zhang, X. Focusing Surface Plasmons with a Plasmonic Lens. Nano Lett. 2005, 5, 1726–1729. [Google Scholar] [CrossRef]
- Lei, X.; Ren, Y.; Lu, Y.; Wang, P. Lens for Efficient Focusing of Bloch Surface Waves. Phys. Rev. Appl. 2018, 10, 044032. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Zhang, Y.; He, Y.; Min, C.; Yuan, X. Detecting Cylindrical Vector Beams with an On-Chip Plasmonic Spin-Hall Metalens. Opt. Express 2022, 30, 10758–10769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Min, C.; Zhang, Y.; Fu, Y.; Li, L.; Wang, Y.; Yuan, X. Detection of Cylindrical Vector Beams with Chiral Plasmonic Lens. Chin. Opt. Lett. 2022, 20, 023602. [Google Scholar] [CrossRef]
- Qin, Y.; Li, Y.; Deng, D.; Liu, Y.; Sun, M. Ultracompact Biosensor Based on a Metalens with a Longitudinally Structured Vector Beam. Appl. Opt. 2019, 58, 4438–4442. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, C.; Yang, Y.; Zhu, S.; Yuan, X.-C. Focused Cylindrical Vector Beam Assisted Microscopic pSPR Biosensor with an Ultra Wide Dynamic Range. Opt. Lett. 2012, 37, 2091–2093. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Zheng, Y.; Chen, X. Nonlinear Frequency Conversion and Manipulation of Vector Beams. Opt. Lett. 2018, 43, 5981–5984. [Google Scholar] [CrossRef]
- Milione, G.; Nguyen, T.A.; Leach, J.; Nolan, D.A.; Alfano, R.R. Using the Nonseparability of Vector Beams to Encode Information for Optical Communication. Opt. Lett. 2015, 40, 4887–4890. [Google Scholar] [CrossRef] [PubMed]
- Montagnac, M.; Brûlé, Y.; Cuche, A.; Poumirol, J.-M.; Weber, S.J.; Müller, J.; Larrieu, G.; Larrey, V.; Fournel, F.; Boisron, O.; et al. Control of Light Emission of Quantum Emitters Coupled to Silicon Nanoantenna Using Cylindrical Vector Beams. Light Sci. Appl. 2023, 12, 239. [Google Scholar] [CrossRef] [PubMed]
- Ndagano, B.; Nape, I.; Cox, M.A.; Rosales-Guzman, C.; Forbes, A. Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication. J. Light. Technol. 2018, 36, 292–301. [Google Scholar] [CrossRef]
- Bravo-Abad, J.; Martín-Moreno, L.; García-Vidal, F.J. Transmission Properties of a Single Metallic Slit: From the Subwavelength Regime to the Geometrical-Optics Limit. Phys. Rev. E 2004, 69, 026601. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, J.; Lindfors, K.; Setälä, T.; Kaivola, M.; Friberg, A. Spectral Analysis of Resonant Transmission of Light through a Single Sub-Wavelength Slit. Opt. Express 2004, 12, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Yang, S.; Chen, W.; Nelson, R.L.; Zhan, Q. Miniature Circular Polarization Analyzer with Spiral Plasmonic Lens. Opt. Lett. 2009, 34, 3047–3049. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-107-00546-4. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhong, J.; Lei, X.; Zhan, Q. Plasmonic Focusing of a High-Order Cylindrical Vector Beam for On-Chip Detection. Photonics 2024, 11, 579. https://doi.org/10.3390/photonics11060579
Wang H, Zhong J, Lei X, Zhan Q. Plasmonic Focusing of a High-Order Cylindrical Vector Beam for On-Chip Detection. Photonics. 2024; 11(6):579. https://doi.org/10.3390/photonics11060579
Chicago/Turabian StyleWang, Hao, Jinzhan Zhong, Xinrui Lei, and Qiwen Zhan. 2024. "Plasmonic Focusing of a High-Order Cylindrical Vector Beam for On-Chip Detection" Photonics 11, no. 6: 579. https://doi.org/10.3390/photonics11060579
APA StyleWang, H., Zhong, J., Lei, X., & Zhan, Q. (2024). Plasmonic Focusing of a High-Order Cylindrical Vector Beam for On-Chip Detection. Photonics, 11(6), 579. https://doi.org/10.3390/photonics11060579