Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators
Abstract
1. Introduction
2. Monte Carlo Simulation
3. Experiments
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2017, 2, 17072. [Google Scholar] [CrossRef]
- Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.C.; del Caño, T.; Rico, E.; et al. A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858. [Google Scholar] [CrossRef]
- Park, K.; Yi, J.; Yoon, S.-Y.; Park, S.M.; Kim, J.; Shin, H.-B.; Biswas, S.; Yoo, G.Y.; Moon, S.-H.; Kim, J.; et al. Luminescent solar concentrator efficiency enhanced via nearly lossless propagation pathways. Nat. Photonics 2024, 18, 177–185. [Google Scholar] [CrossRef]
- Siripurapu, M.; Meinardi, F.; Brovelli, S.; Carulli, F. Environmental Effects on the Performance of Quantum Dot Luminescent Solar Concentrators. ACS Photonics 2023, 10, 2987–2993. [Google Scholar] [CrossRef] [PubMed]
- Meinardi, F.; Bruni, F.; Castellan, C.; Meucci, M.; Umair, A.M.; La Rosa, M.; Catani, J.; Brovelli, S. Certification Grade Quantum Dot Luminescent Solar Concentrator Glazing with Optical Wireless Communication Capability for Connected Sustainable Architecture. Adv. Energy Mater. 2024, 14, 2304006. [Google Scholar] [CrossRef]
- Weber, W.H.; Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 1976, 15, 2299–2300. [Google Scholar] [CrossRef]
- Li, X.; Qi, J.; Zhu, J.; Jia, Y.; Liu, Y.; Li, Y.; Liu, H.; Li, G.; Wu, K. Low-Loss, High-Transparency Luminescent Solar Concentrators with a Bioinspired Self-Cleaning Surface. J. Phys. Chem. Lett. 2022, 13, 9177–9185. [Google Scholar] [CrossRef] [PubMed]
- Gungor, K.; Du, J.; Klimov, V.I. General Trends in the Performance of Quantum Dot Luminescent Solar Concentrators (LSCs) Revealed Using the “Effective LSC Quality Factor”. ACS Energy Lett. 2022, 7, 1741–1749. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Lai, Y.; Zhao, X.; Zheng, K.; Wang, R.; Zhou, Y. Highly efficient and stable tandem luminescent solar concentrators based on carbon dots and CuInSe2−xSx/ZnS quantum dots. Nanoscale 2024, 16, 188–194. [Google Scholar] [CrossRef]
- Wang, J.; Cai, T.; Chen, O. Cesium Copper Halide Perovskite Nanocrystal-Based Photon-Managing Devices for Enhanced Ultraviolet Photon Harvesting. Nano Lett. 2023, 23, 4367–4374. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, P.; Wilson, L.J.; Subbiah, J.; Yang, H.; Mulvaney, P.; Jones, D.J.; Ghiggino, K.P.; Wong, W.W.H. High-Performance Large-Area Luminescence Solar Concentrator Incorporating a Donor–Emitter Fluorophore System. ACS Energy Lett. 2019, 4, 1839–1844. [Google Scholar] [CrossRef]
- Rosadoni, E.; Bellina, F.; Lessi, M.; Micheletti, C.; Ventura, F.; Pucci, A. Y-shaped alkynylimidazoles as effective push-pull fluorescent dyes for luminescent solar concentrators (LSCs). Dye. Pigment. 2022, 201, 110262. [Google Scholar] [CrossRef]
- Lee, H.J.; Im, S.; Jung, D.; Kim, K.; Chae, J.A.; Lim, J.; Park, J.W.; Shin, D.; Char, K.; Jeong, B.G.; et al. Coherent heteroepitaxial growth of I-III-VI2 Ag(In,Ga)S2 colloidal nanocrystals with near-unity quantum yield for use in luminescent solar concentrators. Nat. Commun. 2023, 14, 3779. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, S.S.; Jokar, E.; Chiang, Y.-T.; Kuan, C.-H.; Khodakarami, K.; Hosseini, Z.; Chen, F.-C.; Diau, E.W.-G. Mn-Doped Organic–Inorganic Perovskite Nanocrystals for a Flexible Luminescent Solar Concentrator. ACS Appl. Energy Mater. 2021, 4, 10565–10573. [Google Scholar] [CrossRef]
- Liu, G.; Mazzaro, R.; Wang, Y.; Zhao, H.; Vomiero, A. High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots. Nano Energy 2019, 60, 119–126. [Google Scholar] [CrossRef]
- Dhamo, L.; Carulli, F.; Nickl, P.; Wegner, K.D.; Hodoroaba, V.D.; Würth, C.; Brovelli, S.; Resch-Genger, U. Efficient Luminescent Solar Concentrators Based on Environmentally Friendly Cd-Free Ternary AIS/ZnS Quantum Dots. Adv. Opt. Mater. 2021, 9, 2100587. [Google Scholar] [CrossRef]
- Wu, K.; Li, H.; Klimov, V.I. Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photonics 2018, 12, 105–110. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Zhao, X.; Vomiero, A.; Gong, X. High-loading of organosilane-grafted carbon dots in high-performance luminescent solar concentrators with ultrahigh transparency. Nano Energy 2023, 115, 108674. [Google Scholar] [CrossRef]
- Wu, Y.; Zhan, Y.; Xin, W.; Cao, W.; Li, J.; Chen, M.; Jiang, X.; Wang, J.; Sun, Z. Highly Emissive Carbon Dots/Organosilicon Composites for Efficient and Stable Luminescent Solar Concentrators. ACS Appl. Energy Mater. 2022, 5, 1781–1792. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Zhao, X.; Gong, X. Boosting efficiency of luminescent solar concentrators using ultra-bright carbon dots with large Stokes shift. Nanoscale Horiz 2022, 8, 83–94. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, G.; You, S.; Camargo, F.V.A.; Zavelani-Rossi, M.; Wang, X.; Sun, C.; Liu, B.; Zhang, Y.; Han, G.; et al. Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy Environ. Sci. 2021, 14, 396–406. [Google Scholar] [CrossRef]
- You, Y.; Tong, X.; Imran Channa, A.; Zhi, H.; Cai, M.; Zhao, H.; Xia, L.; Liu, G.; Zhao, H.; Wang, Z. High-efficiency luminescent solar concentrators based on Composition-tunable Eco-friendly Core/shell quantum dots. Chem. Eng. J. 2023, 452, 139490. [Google Scholar] [CrossRef]
- Zhi, H.; Tong, X.; You, Y.; Channa, A.I.; Li, X.; Wu, J.; Selopal, G.S.; Wang, Z.M. Engineering the Optical Properties of Eco-Friendly CuGaS2/ZnS and CuGaInS2/ZnS Core/Shell Quantum Dots for High-Performance Tandem Luminescent Solar Concentrators. Sol. RRL 2023, 7, 2300641. [Google Scholar] [CrossRef]
- Cai, T.; Wang, J.; Li, W.; Hills-Kimball, K.; Yang, H.; Nagaoka, Y.; Yuan, Y.; Zia, R.; Chen, O. Mn(2+)/Yb(3+) Codoped CsPbCl(3) Perovskite Nanocrystals with Triple-Wavelength Emission for Luminescent Solar Concentrators. Adv. Sci. 2020, 7, 2001317. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Xu, W.; Zhou, D.; Ji, Y.; Wang, Y.; Sun, R.; Bai, X.; Zhou, J.; Song, H. Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of Silicon photodetectors with external quantum efficiency exceeding 70%. Nano Energy 2020, 78, 105278. [Google Scholar] [CrossRef]
- Zeng, M.; Artizzu, F.; Liu, J.; Singh, S.; Locardi, F.; Mara, D.; Hens, Z.; Van Deun, R. Boosting the Er3+ 1.5 μm Luminescence in CsPbCl3 Perovskite Nanocrystals for Photonic Devices Operating at Telecommunication Wavelengths. ACS Appl. Nano Mater. 2020, 3, 4699–4707. [Google Scholar] [CrossRef]
- Gao, D.; Chen, B.; Sha, X.; Zhang, Y.; Chen, X.; Wang, L.; Zhang, X.; Zhang, J.; Cao, Y.; Wang, Y.; et al. Near infrared emissions from both high efficient quantum cutting (173%) and nearly-pure-color upconversion in NaY(WO4)2:Er3+/Yb3+ with thermal management capability for silicon-based solar cells. Light: Sci. Appl. 2024, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Milstein, T.J.; Kroupa, D.M.; Gamelin, D.R. Picosecond Quantum Cutting Generates Photoluminescence Quantum Yields Over 100% in Ytterbium-Doped CsPbCl3 Nanocrystals. Nano Lett. 2018, 18, 3792–3799. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Z.; Tang, C.; Zhang, X.; Lee, B.R.; Li, X.; Li, D.; Zhang, Y.; Hu, J.; Zhao, D.; et al. Near-Infrared LEDs Based on Quantum Cutting-Activated Electroluminescence of Ytterbium Ions. Nano Lett. 2023, 23, 82–90. [Google Scholar] [CrossRef]
- Xu, W.; Liu, J.; Dong, B.; Huang, J.; Shi, H.; Xue, X.; Liu, M. Atomic-scale imaging of ytterbium ions in lead halide perovskites. Sci. Adv. 2023, 9, eadi7931. [Google Scholar] [CrossRef]
- Luo, X.; Ding, T.; Liu, X.; Liu, Y.; Wu, K. Quantum-Cutting Luminescent Solar Concentrators Using Ytterbium-Doped Perovskite Nanocrystals. Nano Lett. 2019, 19, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Milstein, T.J.; Kluherz, K.T.; Kroupa, D.M.; Erickson, C.S.; De Yoreo, J.J.; Gamelin, D.R. Anion Exchange and the Quantum-Cutting Energy Threshold in Ytterbium-Doped CsPb(Cl1–xBrx)3 Perovskite Nanocrystals. Nano Lett. 2019, 19, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
- Milstein, T.J.; Roh, J.Y.D.; Jacoby, L.M.; Crane, M.J.; Sommer, D.E.; Dunham, S.T.; Gamelin, D.R. Ubiquitous Near-Band-Edge Defect State in Rare-Earth-Doped Lead-Halide Perovskites. Chem. Mater. 2022, 34, 3759–3769. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, Y.; Zuo, C.; Zhang, F.; Huang, Z.; Jiang, L.; Lai, Y.; Ding, L.; Liu, F. Ambient air-processed Cu2ZnSn(S,Se)4 solar cells with over 12% efficiency. Sci. Bull. 2021, 66, 880–883. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Zuo, C.; Ren, S.; Zhao, D.; Ding, L. Low-bandgap Sn–Pb perovskite solar cells. J. Semicond. 2021, 42, 060202. [Google Scholar] [CrossRef]
- Steiner, M.A.; France, R.M.; Buencuerpo, J.; Geisz, J.F.; Nielsen, M.P.; Pusch, A.; Olavarria, W.J.; Young, M.; Ekins-Daukes, N.J. High Efficiency Inverted GaAs and GaInP/GaAs Solar Cells With Strain-Balanced GaInAs/GaAsP Quantum Wells. Adv. Energy Mater. 2020, 11, 2002874. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Luminescence solar concentrators: A technology update. Nano Energy 2023, 109, 108269. [Google Scholar] [CrossRef]
- Cao, M.; Zhao, X.; Gong, X. Achieving High-Efficiency Large-Area Luminescent Solar Concentrators. JACS Au 2023, 3, 25–35. [Google Scholar] [CrossRef]
- Bradshaw, L.R.; Knowles, K.E.; McDowall, S.; Gamelin, D.R. Nanocrystals for Luminescent Solar Concentrators. Nano Lett. 2015, 15, 1315–1323. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Q.; Li, W.; Luo, X. Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators. Photonics 2024, 11, 553. https://doi.org/10.3390/photonics11060553
Nie Q, Li W, Luo X. Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators. Photonics. 2024; 11(6):553. https://doi.org/10.3390/photonics11060553
Chicago/Turabian StyleNie, Qi, Wenqing Li, and Xiao Luo. 2024. "Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators" Photonics 11, no. 6: 553. https://doi.org/10.3390/photonics11060553
APA StyleNie, Q., Li, W., & Luo, X. (2024). Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators. Photonics, 11(6), 553. https://doi.org/10.3390/photonics11060553