Far-Field Super-Resolution Microscopy Using Evanescent Illumination: A Review
Abstract
:1. Introduction
2. Basic Principle of Super-Resolution Imaging Using Evanescent Illumination
3. Super-Resolution Imaging by Determined k-Vector Evanescent Wave Illumination
3.1. Super-Resolution Microscopy via Waveguide Evanescent Wave Illumination
3.2. Super-Resolution Microscopy via Surface Plasmon Polaritons Illumination
4. Super-Resolution Imaging by Random k-Vector Evanescent Speckle Illumination
4.1. Super-Resolution Microscopy Using Waveguide Speckle Illumination
4.2. Super-Resolution Imaging Using Surface Plasmon Polaritons Speckle Illumination
5. Summary and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 1873, 9, 413–468. [Google Scholar] [CrossRef]
- von Helmholtz, H. Die Theoretische Grenze für die Leistungsfähigkeit der Mikroskope; Biblio, Inc.: Asheville, NC, USA, 1874. [Google Scholar]
- Jiang, Y.; Chen, Z.; Han, Y.; Deb, P.; Gao, H.; Xie, S.; Purohit, P.; Tate, M.W.; Park, J.; Gruner, S.M.; et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018, 559, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Moerner, W.E.; Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 1989, 62, 2535. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.M.; Cubitt, A.B.; Tsien, R.Y.; Moerner, W.E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 1997, 388, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Klar, T.A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210. [Google Scholar] [CrossRef] [PubMed]
- Wildanger, D.; Patton, B.R.; Schill, H.; Marseglia, L.; Hadden, J.P.; Knauer, S.; Schönle, A.; Rarity, J.G.; O’Brien, J.L.; Hell, S.W.; et al. Solid Immersion Facilitates Fluorescence Microscopy with Nanometer Resolution and Sub-Ångström Emitter Localization. Adv. Mater. 2012, 24, OP309–OP313. [Google Scholar] [CrossRef]
- Klar, T.A.; Hell, S.W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 1999, 24, 954–956. [Google Scholar] [CrossRef] [PubMed]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef]
- Shroff, H.; Galbraith, C.G.; Galbraith, J.A.; Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 2008, 5, 417–423. [Google Scholar] [CrossRef]
- Betzig, E. Proposed method for molecular optical imaging. Opt. Lett. 1995, 20, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Manley, S.; Gillette, J.M.; Patterson, G.H.; Shroff, H.; Hess, H.F.; Betzig, E.; Lippincott-Schwartz, J. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 2008, 5, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Pavani, S.R.P.; Thompson, M.A.; Biteen, J.S.; Lord, S.J.; Liu, N.; Twieg, R.J.; Piestun, R.; Moerner, W.E. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA 2009, 106, 2995–2999. [Google Scholar] [CrossRef]
- Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy. Science 2008, 319, 810–813. [Google Scholar] [CrossRef] [PubMed]
- van de Linde, S.; Endesfelder, U.; Mukherjee, A.; Schüttpelz, M.; Wiebusch, G.; Wolter, S.; Heilemann, M.; Sauer, M. Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochem. Photobiol. Sci. 2009, 8, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.-H.; Xia, C.; Zhong, G.; Babcock, H.P.; Vaughan, J.C.; Huang, B.; Wang, X.; Xu, C.; Bi, G.-Q.; Zhuang, X. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci. USA 2012, 109, 13978–13983. [Google Scholar] [CrossRef] [PubMed]
- Shiku, H.; Dunn, R.C. Near-field scanning—Optical microscopy. Anal. Chem. 1999, 71, 23A–29A. [Google Scholar] [CrossRef]
- Hecht, B.; Sick, B.; Wild, U.P.; Deckert, V.; Zenobi, R.; Martin, O.J.F.; Pohl, D.W. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. J. Chem. Phys. 2000, 112, 7761–7774. [Google Scholar] [CrossRef]
- Bek, A.; Vogelgesang, R.; Kern, K. Apertureless scanning near field optical microscope with sub-10 nm resolution. Rev. Sci. Instrum. 2006, 77, 043703. [Google Scholar] [CrossRef]
- Rotenberg, N.; Kuipers, L. Mapping nanoscale light fields. Nat. Photonics 2014, 8, 919–926. [Google Scholar] [CrossRef]
- Rho, J.; Ye, Z.; Xiong, Y.; Yin, X.; Liu, Z.; Choi, H.; Bartal, G.; Zhang, X. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun. 2010, 1, 143. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Shalaev, M.I.; Litchinitser, N.M. Experimental demonstration of a non-resonant hyperlens in the visible spectral range. Nat. Commun. 2015, 6, 7201. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X. Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects. Science 2007, 315, 1686. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, G.P. Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging. Opt. Express 2009, 17, 3903–3912. [Google Scholar] [CrossRef] [PubMed]
- Jacob, Z.; Alekseyev, L.V.; Narimanov, E. Optical “Hyperlens”: Imaging in the far field beyond the diffraction limit. In Proceedings of the Frontiers in Optics, Rochester, NY, USA, 10 October 2006; p. FMA2. [Google Scholar]
- Gustafsson, M.G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000, 198, 82–87. [Google Scholar] [CrossRef]
- Heintzmann, R.; Cremer, C.G. Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating. In Proceedings of the Optical Biopsies and Microscopic Techniques III, Stockholm, Sweden, 9–11 September 1998; pp. 185–196. [Google Scholar]
- Wong, A.M.H.; Eleftheriades, G.V. An Optical Super-Microscope for Far-field, Real-time Imaging Beyond the Diffraction Limit. Sci. Rep. 2013, 3, 1715. [Google Scholar] [CrossRef] [PubMed]
- Rogers, E.T.F.; Quraishe, S.; Rogers, K.S.; Newman, T.A.; Smith, P.J.S.; Zheludev, N.I. Far-field unlabeled super-resolution imaging with superoscillatory illumination. APL Photonics 2020, 5, 066107. [Google Scholar] [CrossRef]
- Pu, T.; Ou, J.Y.; Papasimakis, N.; Zheludev, N.I. Label-free deeply subwavelength optical microscopy. Appl. Phys. Lett. 2020, 116, 131105. [Google Scholar] [CrossRef]
- Yuan, G.H.; Lin, Y.H.; Tsai, D.P.; Zheludev, N.I. Superoscillatory quartz lens with effective numerical aperture greater than one. Appl. Phys. Lett. 2020, 117, 021106. [Google Scholar] [CrossRef]
- Zheludev, N.I.; Yuan, G. Optical superoscillation technologies beyond the diffraction limit. Nat. Rev. Phys. 2021, 4, 16–32. [Google Scholar] [CrossRef]
- Darafsheh, A. Microsphere-assisted microscopy. J. Appl. Phys. 2022, 131, 031102. [Google Scholar] [CrossRef]
- Kwon, S.; Park, J.; Kim, K.; Cho, Y.; Lee, M. Microsphere-assisted, nanospot, non-destructive metrology for semiconductor devices. Light Sci. Appl. 2022, 11, 32. [Google Scholar] [CrossRef]
- Lai, H.S.S.; Wang, F.; Li, Y.; Jia, B.; Liu, L.; Li, W.J. Super-resolution real imaging in microsphere-assisted microscopy. PLoS ONE 2016, 11, e0165194. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.B.; Guo, W.; Li, L.; Luk’yanchuk, B.; Khan, A.; Liu, Z.; Chen, Z.C.; Hong, M.H. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2011, 2, 218. [Google Scholar] [CrossRef]
- Allen, K.W.; Farahi, N.; Li, Y.C.; Limberopoulos, N.I.; Walker, D.E.; Urbas, A.M.; Liberman, V.; Astratov, V.N. Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis. Ann. Der Phys. 2015, 527, 513–522. [Google Scholar] [CrossRef]
- Darafsheh, A.; Walsh, G.F.; Dal Negro, L.; Astratov, V.N. Optical super-resolution by high-index liquid-immersed microspheres. Appl. Phys. Lett. 2012, 101, 141128. [Google Scholar] [CrossRef]
- Darafsheh, A.; Limberopoulos, N.I.; Derov, J.S.; Walker, D.E.; Astratov, V.N. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Appl. Phys. Lett. 2014, 104, 061117. [Google Scholar] [CrossRef]
- Allen, K.W.; Farahi, N.; Li, Y.C.; Limberopoulos, N.I.; Walker, D.E.; Urbas, A.M.; Astratov, V.N. Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers. Opt. Express 2015, 23, 24484–24496. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Kuang, C.; Li, Y.; Liu, X. Evanescent-wave-induced frequency shift for optical superresolution imaging. Opt. Lett. 2013, 38, 2455–2458. [Google Scholar] [CrossRef]
- Liu, X.; Kuang, C.; Hao, X.; Pang, C.; Xu, P.; Li, H.; Liu, Y.; Yu, C.; Xu, Y.; Nan, D. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging. Phys. Rev. Lett. 2017, 118, 076101. [Google Scholar] [CrossRef]
- Tang, M.; Yang, Q. Spatial-frequency-shift Super-resolution Imaging Based on Micro/nanomaterials. In Optical Imaging and Sensing; Wiley: Hoboken, NJ, USA, 2023; pp. 175–213. [Google Scholar]
- Pang, C.; Liu, X.; Zhuge, M.; Liu, X.; Somekh, M.G.; Zhao, Y.; Jin, D.; Shen, W.; Li, H.; Wu, L. High-contrast wide-field evanescent wave illuminated subdiffraction imaging. Opt. Lett. 2017, 42, 4569–4572. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Liu, X.; Wen, Z.; Lin, F.; Meng, C.; Liu, X.; Ma, Y.; Yang, Q. Far-Field Superresolution Imaging via Spatial Frequency Modulation. Laser Photonics Rev. 2020, 14, 1900011. [Google Scholar] [CrossRef]
- Zheng, G.; Horstmeyer, R.; Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 2013, 7, 739–745. [Google Scholar] [CrossRef]
- Mudry, E.; Belkebir, K.; Girard, J.; Savatier, J.; Le Moal, E.; Nicoletti, C.; Allain, M.; Sentenac, A. Structured illumination microscopy using unknown speckle patterns. Nat. Photonics 2012, 6, 312–315. [Google Scholar] [CrossRef]
- Yilmaz, H.; van Putten, E.G.; Bertolotti, J.; Lagendijk, A.; Vos, W.L.; Mosk, A.P. Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica 2015, 2, 424–429. [Google Scholar] [CrossRef]
- Jin, L.; Wu, J.; Xiu, P.; Fan, J.; Hu, M.; Kuang, C.; Xu, Y.; Zheng, X.; Liu, X. High-resolution 3D reconstruction of microtubule structures by quantitative multi-angle total internal reflection fluorescence microscopy. Opt. Commun. 2017, 395, 16–23. [Google Scholar] [CrossRef]
- Fu, Y.; Winter, P.W.; Rojas, R.; Wang, V.; McAuliffe, M.; Patterson, G.H. Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching. Proc. Natl. Acad. Sci. USA 2016, 113, 4368–4373. [Google Scholar] [CrossRef]
- Stabley, D.R.; Oh, T.; Simon, S.M.; Mattheyses, A.L.; Salaita, K. Real-time fluorescence imaging with 20 nm axial resolution. Nat. Commun. 2015, 6, 8307. [Google Scholar] [CrossRef]
- Boulanger, J.; Gueudry, C.; Münch, D.; Cinquin, B.; Paul-Gilloteaux, P.; Bardin, S.; Guérin, C.; Senger, F.; Blanchoin, L.; Salamero, J. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging. Proc. Natl. Acad. Sci. USA 2014, 111, 17164–17169. [Google Scholar] [CrossRef]
- Stock, K.; Sailer, R.; Strauss, W.S.L.; Lyttek, M.; Steiner, R.; Schneckenburger, H. Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): Realization and application of a compact illumination device. J. Microsc. 2003, 211, 19–29. [Google Scholar] [CrossRef]
- Paszek, M.J.; DuFort, C.C.; Rubashkin, M.G.; Davidson, M.W.; Thorn, K.S.; Liphardt, J.T.; Weaver, V.M. Scanning angle interference microscopy reveals cell dynamics at the nanoscale. Nat. Methods 2012, 9, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Liu, X.; Kuang, C.; Li, Y.; Ku, Y.; Zhang, H.; Li, H.; Tong, L. Far-field super-resolution imaging using near-field illumination by micro-fiber. Appl. Phys. Lett. 2013, 102, 013104. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, W.; Zhang, Z.; Zheng, C.; Huang, Y.; Cao, R.; Zhu, D.; Xu, L.; Zhang, M.; Zhang, Y.-H.; et al. Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy. Nat. Commun. 2018, 9, 4818. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.; Li, J.; Tang, M.; Wang, J.; Mela, I.; Ströhl, F.; Hecker, L.; Shen, W.; Liu, Q.; Liu, X.; et al. On-Chip Super-Resolution Imaging with Fluorescent Polymer Films. Adv. Funct. Mater. 2019, 29, 1900126. [Google Scholar] [CrossRef]
- Ye, D.; Tang, M.; Liu, X.; Ma, Y.; Liu, X.; Yang, Q. Low loss and omnidirectional Si3N4 waveguide for label-free spatial frequency shift super-resolution imaging. J. Phys. D Appl. Phys. 2021, 54, 315101. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Pang, C.; Ma, Y.; Meng, C.; Zhang, J.; Liu, X.; Yang, Q. Si3N4 waveguide platform for label-free super-resolution imaging: Simulation and analysis. J. Phys. D Appl. Phys. 2019, 52, 284002. [Google Scholar] [CrossRef]
- Helle, Ø.I.; Dullo, F.T.; Lahrberg, M.; Tinguely, J.-C.; Hellesø, O.G.; Ahluwalia, B.S. Structured illumination microscopy using a photonic chip. Nat. Photonics 2020, 14, 431–438. [Google Scholar] [CrossRef]
- Priyadarshi, A.; Dullo, F.T.; Wolfson, D.L.; Ahmad, A.; Jayakumar, N.; Dubey, V.; Tinguely, J.-C.; Ahluwalia, B.S.; Murugan, G.S. A transparent waveguide chip for versatile total internal reflection fluorescence-based microscopy and nanoscopy. Commun. Mater. 2021, 2, 85. [Google Scholar] [CrossRef]
- Diekmann, R.; Helle, Ø.I.; Øie, C.I.; McCourt, P.; Huser, T.R.; Schüttpelz, M.; Ahluwalia, B.S. Chip-based wide field-of-view nanoscopy. Nat. Photonics 2017, 11, 322–328. [Google Scholar] [CrossRef]
- Villegas-Hernández, L.E.; Dubey, V.; Nystad, M.; Tinguely, J.-C.; Coucheron, D.A.; Dullo, F.T.; Priyadarshi, A.; Acuña, S.; Ahmad, A.; Mateos, J.M.; et al. Chip-based multimodal super-resolution microscopy for histological investigations of cryopreserved tissue sections. Light Sci. Appl. 2022, 11, 43. [Google Scholar] [CrossRef]
- Jayakumar, N.; Dullo, F.T.; Dubey, V.; Ahmad, A.; Ströhl, F.; Cauzzo, J.; Guerreiro, E.M.; Snir, O.; Skalko-Basnet, N.; Agarwal, K.; et al. Multi-moded high-index contrast optical waveguide for super-contrast high-resolution label-free microscopy. Nanophotonics 2022, 11, 3421–3436. [Google Scholar] [CrossRef] [PubMed]
- Butola, A.; Coucheron, D.A.; Szafranska, K.; Ahmad, A.; Mao, H.; Tinguely, J.-C.; McCourt, P.; Senthilkumaran, P.; Mehta, D.S.; Agarwal, K.; et al. Multimodal on-chip nanoscopy and quantitative phase imaging reveals the nanoscale morphology of liver sinusoidal endothelial cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2115323118. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tang, M.; Meng, C.; Pang, C.; Kuang, C.; Chen, W.; Kaminski, C.F.; Yang, Q.; Liu, X. Chip-compatible wide-field 3D nanoscopy through tunable spatial frequency shift effect. Sci. China Phys. Mech. Astron. 2021, 64, 294211. [Google Scholar] [CrossRef]
- Tang, M.; Han, Y.; Ye, D.; Zhang, Q.; Pang, C.; Liu, X.; Shen, W.; Ma, Y.; Kaminski, C.F.; Liu, X.; et al. High-Refractive-Index Chip with Periodically Fine-Tuning Gratings for Tunable Virtual-Wavevector Spatial Frequency Shift Universal Super-Resolution Imaging. Adv. Sci. 2022, 9, 2103835. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Liu, Z. Plasmonic Structured Illumination Microscopy. Nano Lett. 2010, 10, 2531–2536. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.S.; Yuan, X.-C.; Yuan, G.H.; Wang, Q. High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices. Appl. Phys. Lett. 2010, 97, 241109. [Google Scholar] [CrossRef]
- Wang, Q.; Bu, J.; Tan, P.S.; Yuan, G.H.; Teng, J.H.; Wang, H.; Yuan, X.C. Subwavelength-Sized Plasmonic Structures for Wide-Field Optical Microscopic Imaging with Super-Resolution. Plasmonics 2012, 7, 427–433. [Google Scholar] [CrossRef]
- Wei, F.; Lu, D.; Shen, H.; Wan, W.; Ponsetto, J.L.; Huang, E.; Liu, Z. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. Nano Lett. 2014, 14, 4634–4639. [Google Scholar] [CrossRef]
- Ponsetto, J.L.; Bezryadina, A.; Wei, F.; Onishi, K.; Shen, H.; Huang, E.; Ferrari, L.; Ma, Q.; Zou, Y.; Liu, Z. Experimental Demonstration of Localized Plasmonic Structured Illumination Microscopy. ACS Nano 2017, 11, 5344–5350. [Google Scholar] [CrossRef]
- Ponsetto, J.L.; Wei, F.F.; Liu, Z.W. Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging. Nanoscale 2014, 6, 5807–5812. [Google Scholar] [CrossRef] [PubMed]
- Bezryadina, A.; Zhao, J.; Xia, Y.; Lee, Y.U.; Zhang, X.; Liu, Z. Localized plasmonic structured illumination microscopy with gaps in spatial frequencies. Opt. Lett. 2019, 44, 2915–2918. [Google Scholar] [CrossRef]
- Bezryadina, A.; Zhao, J.X.; Xia, Y.; Zhang, X.; Liu, Z.W. High Spatiotemporal Resolution Imaging with Localized Plasmonic Structured Illumination Microscopy. ACS Nano 2018, 12, 8248–8254. [Google Scholar] [CrossRef] [PubMed]
- Labeyrie, A. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images. Astron. Astrophys. 1970, 6, 85. [Google Scholar]
- García, J.; Zalevsky, Z.; Fixler, D. Synthetic aperture superresolution by speckle pattern projection. Opt. Express 2005, 13, 6073–6078. [Google Scholar] [CrossRef]
- van Putten, E.G.; Akbulut, D.; Bertolotti, J.; Vos, W.L.; Lagendijk, A.; Mosk, A.P. Scattering Lens Resolves Sub-100 nm Structures with Visible Light. Phys. Rev. Lett. 2011, 106, 193905. [Google Scholar] [CrossRef]
- Vellekoop, I.M.; Lagendijk, A.; Mosk, A.P. Exploiting disorder for perfect focusing. Nat. Photonics 2010, 4, 320–322. [Google Scholar] [CrossRef]
- Lee, Y.U.; Zhao, J.; Ma, Q.; Khorashad, L.K.; Posner, C.; Li, G.; Wisna, G.B.M.; Burns, Z.; Zhang, J.; Liu, Z. Metamaterial assisted illumination nanoscopy via random super-resolution speckles. Nat. Commun. 2021, 12, 1559. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.U.; Li, S.; Wisna, G.B.M.; Zhao, J.; Zeng, Y.; Tao, A.R.; Liu, Z. Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging. Nat. Commun. 2022, 13, 6631. [Google Scholar] [CrossRef]
- Lee, Y.U.; Nie, Z.; Li, S.; Lambert, C.-H.; Zhao, J.; Yang, F.; Wisna, G.B.M.; Yang, S.; Zhang, X.; Liu, Z. Ultrathin Layered Hyperbolic Metamaterial-Assisted Illumination Nanoscopy. Nano Lett. 2022, 22, 5916–5921. [Google Scholar] [CrossRef]
- Wood, B.; Pendry, J.B.; Tsai, D.P. Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 2006, 74, 115116. [Google Scholar] [CrossRef]
- Lee, Y.U.; Posner, C.; Nie, Z.; Zhao, J.; Li, S.; Bopp, S.E.; Wisna, G.B.M.; Ha, J.; Song, C.; Zhang, J.; et al. Organic Hyperbolic Material Assisted Illumination Nanoscopy. Adv. Sci. 2021, 8, 2102230. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.H.; Müller, M.; Wang, T.-C.; Scheidig, P.M.; Schneider, A.; Schüttpelz, M.; Huser, T.; Schenck, W. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Photon. Res. 2021, 9, B168–B181. [Google Scholar] [CrossRef]
- Qiao, C.; Li, D.; Liu, Y.; Zhang, S.; Liu, K.; Liu, C.; Guo, Y.; Jiang, T.; Fang, C.; Li, N.; et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat. Biotechnol. 2023, 41, 367–377. [Google Scholar] [CrossRef]
- Jin, L.; Liu, B.; Zhao, F.; Hahn, S.; Dong, B.; Song, R.; Elston, T.C.; Xu, Y.; Hahn, K.M. Deep learning enables structured illumination microscopy with low light levels and enhanced speed. Nat. Commun. 2020, 11, 1934. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Aristov, A.; Lelek, M.; Hao, X.; Zimmer, C. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol. 2018, 36, 460–468. [Google Scholar] [CrossRef]
- Christensen, C.N.; Ward, E.N.; Lu, M.; Lio, P.; Kaminski, C.F. ML-SIM: Universal reconstruction of structured illumination microscopy images using transfer learning. Biomed. Opt. Express 2021, 12, 2720–2733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liang, C.; Tang, M.; Yang, X.; Lin, M.; Han, Y.; Liu, X.; Yang, Q. Alternative deep learning method for fast spatial-frequency shift imaging microscopy. Opt. Exp. 2023, 31, 3719–3730. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Sun, Y.; Yin, L.; Sun, W.; Ye, Z.; Yang, X.; Zhu, H.; Tang, M.; Han, Y.; et al. Single-frame structured illumination microscopy for fast live-cell imaging. APL Photonics 2024, 9, 036102. [Google Scholar] [CrossRef]
- Tang, M.; Han, Y.; Jia, D.; Yang, Q.; Cheng, J.-X. Far-field super-resolution chemical microscopy. Light Sci. Appl. 2023, 12, 137. [Google Scholar] [CrossRef]
- Liu, X.; Tang, M.; Zhou, N.; Pang, C.; Wen, Z.; Liu, X.; Yang, Q. 3D orientation super-resolution spatial-frequency-shift microscopy. arXiv 2024, arXiv:2401.09085. [Google Scholar]
- Kuai, Y.; Xie, Z.; Chen, J.; Gui, H.; Xu, L.; Kuang, C.; Wang, P.; Liu, X.; Liu, J.; Lakowicz, J.R.; et al. Real-Time Measurement of the Hygroscopic Growth Dynamics of Single Aerosol Nanoparticles with Bloch Surface Wave Microscopy. ACS Nano 2020, 14, 9136–9144. [Google Scholar] [CrossRef] [PubMed]
- Kuai, Y.; Chen, J.; Tang, X.; Xiang, Y.; Lu, F.; Kuang, C.; Xu, L.; Shen, W.; Cheng, J.; Gui, H.; et al. Label-free surface-sensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination. Sci. Adv. 2019, 5, eaav5335. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zhang, H.; Yang, X.; Liu, X.; Tang, M.; Yang, Q. Far-Field Super-Resolution Microscopy Using Evanescent Illumination: A Review. Photonics 2024, 11, 528. https://doi.org/10.3390/photonics11060528
Zhang Q, Zhang H, Yang X, Liu X, Tang M, Yang Q. Far-Field Super-Resolution Microscopy Using Evanescent Illumination: A Review. Photonics. 2024; 11(6):528. https://doi.org/10.3390/photonics11060528
Chicago/Turabian StyleZhang, Qianwei, Haonan Zhang, Xiaoyu Yang, Xu Liu, Mingwei Tang, and Qing Yang. 2024. "Far-Field Super-Resolution Microscopy Using Evanescent Illumination: A Review" Photonics 11, no. 6: 528. https://doi.org/10.3390/photonics11060528
APA StyleZhang, Q., Zhang, H., Yang, X., Liu, X., Tang, M., & Yang, Q. (2024). Far-Field Super-Resolution Microscopy Using Evanescent Illumination: A Review. Photonics, 11(6), 528. https://doi.org/10.3390/photonics11060528