A Review of Optical Parametric Amplification at the Vulcan Laser Facility
Abstract
:1. Introduction
2. Benefits and Drawbacks of OPCPA
3. Vulcan OPA History
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dubietis, A.; Jonušauskas, G.; Piskarskas, A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 1992, 88, 437–440. [Google Scholar] [CrossRef]
- Ross, I.; Matousek, P.; Towrie, M.; Langley, A.; Collier, J.; Danson, C.; Hernandez-Gomez, C.; Neely, D.; Osvay, K. Prospects for a multi-PW source using optical parametric chirped pulse amplifiers. Laser Part. Beams 1999, 17, 331–340. [Google Scholar] [CrossRef]
- Matousek, P.; Rus, B.; Ross, I. Design of a multi-petawatt optical parametric chirped pulse amplifier for the iodine laser ASTERIX IV. IEEE J. Quantum Electron. 2000, 36, 158–163. [Google Scholar] [CrossRef]
- Zhang, S.K.; Fujita, M.; Yoshida, H.; Kodama, R.; Fujita, H.; Nakatsuka, M.; Izawa, Y.; Yamanaka, C. High-gain broadband optical parametric chirped pulse amplification. In Proceedings of the High-Power Lasers in Energy Engineering; Mima, K., Kulcinski, G.L., Hogan, W.J., Eds.; International Society for Optics and Photonics, SPIE: Osaka, Japan, 2000; Volume 3886, pp. 588–595. [Google Scholar] [CrossRef]
- Ross, I.N.; Collier, J.L.; Matousek, P.; Danson, C.N.; Neely, D.; Allott, R.M.; Pepler, D.A.; Hernandez-Gomez, C.; Osvay, K. Generation of terawatt pulses by use of optical parametric chirped pulse amplification. Appl. Opt. 2000, 39, 2422–2427. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xu, Z.Z.; Leng, Y.X.; Lu, H.H.; Lin, L.H.; Zhang, Z.Q.; Li, R.X.; Zhang, W.Q.; Yin, D.J.; Tang, B. Multiterawatt laser system based on optical parametric chirped pulse amplification. Opt. Lett. 2002, 27, 1135–1137. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Xu, Z.; Yang, X.; Lu, H.; Lin, L.; Zhang, Z.; Jin, S.; Peng, J.; Zhang, W.; Yin, D.; et al. 16.7-TW Laser System Based on Optical Parametric Chirped Pulse Amplification. In Proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Baltimore, MD, USA, 1–6 June 2003; Optica Publishing Group: Washington, DC, USA, 2003; p. CThF1. [Google Scholar]
- Lozhkarev, V.V.; Garanin, S.G.; Gerke, R.R.; Ginzburg, V.N.; Katin, E.V.; Kirsanov, A.V.; Luchinin, G.A.; Mal’shakov, A.N.; Mart’yanov, M.A.; Palashov, O.V.; et al. 100-TW femtosecond laser based on parametric amplification. J. Exp. Theor. Phys. Lett. 2005, 82, 178–180. [Google Scholar] [CrossRef]
- Chekhlov, O.V.; Collier, J.L.; Ross, I.N.; Bates, P.K.; Notley, M.; Hernandez-Gomez, C.; Shaikh, W.; Danson, C.N.; Neely, D.; Matousek, P.; et al. 35 J broadband femtosecond optical parametric chirped pulse amplification system. Opt. Lett. 2006, 31, 3665–3667. [Google Scholar] [CrossRef] [PubMed]
- Lozhkarev, V.V.; Freidman, G.I.; Ginzburg, V.N.; Katin, E.V.; Khazanov, E.A.; Kirsanov, A.V.; Luchinin, G.A.; Mal’shakov, A.N.; Martyanov, M.A.; Palashov, O.V.; et al. Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Phys. Lett. 2007, 4, 421. [Google Scholar] [CrossRef]
- Shaykin, A.; Freidman, G.; Garanin, S.; Ginzburg, V.; Katin, E.; Kedrov, A.; Khazanov, E.; Kirsanov, A.; Lozhkarev, V.; Luchinin, G.; et al. 1 petawatt OPCPA laser in Russia: Status and expectations. In Proceedings of the CLEO/Europe and EQEC 2009 Conference Digest, Munich, Germany, 14–19 June 2009; Optica Publishing Group: Washington, DC, USA, 2009; p. CG P2. [Google Scholar]
- Arun Kumar, R. Borate Crystals for Nonlinear Optical and Laser Applications: A Review. J. Chem. 2012, 2013, 154862. [Google Scholar] [CrossRef]
- Tu, H.; Hu, Z.; Zhao, Y.; Yue, Y.; Hou, J.; Fan, F. Growth of large aperture LBO crystal applied in high power OPCPA schemes. J. Cryst. Growth 2020, 546, 125728. [Google Scholar] [CrossRef]
- Hong, K.H.; Huang, S.W.; Moses, J.; Fu, X.; Lai, C.J.; Cirmi, G.; Sell, A.; Granados, E.; Keathley, P.; Kärtner, F.X. High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1 μm pumped by a picosecond cryogenic Yb:YAG laser. Opt. Express 2011, 19, 15538–15548. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, Y.G.; Yoo, J.Y.; Yoon, J.W.; Yang, J.M.; Lim, H.; Nam, C.H.; Sung, J.H.; Lee, S.K. Spectral shaping of an OPCPA preamplifier for a sub-20-fs multi-PW laser. Opt. Express 2018, 26, 24775–24783. [Google Scholar] [CrossRef]
- Batysta, F.; Antipenkov, R.; Borger, T.; Kissinger, A.; Green, J.T.; Kananavičius, R.; Chériaux, G.; Hidinger, D.; Kolenda, J.; Gaul, E.; et al. Spectral pulse shaping of a 5 Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10 PW laser system. Opt. Lett. 2018, 43, 3866–3869. [Google Scholar] [CrossRef] [PubMed]
- Danson, C.; Brummitt, P.; Clarke, R.; Collier, J.; Fell, B.; Frackiewicz, A.; Hawkes, S.; Hernandez-Gomez, C.; Holligan, P.; Hutchinson, M.; et al. Vulcan petawatt: Design, operation and interactions at 5 × 1020 Wcm−2. Laser Part. Beams 2005, 23, 87–93. [Google Scholar] [CrossRef]
- Dorrer, C.; Consentino, A.; Irwin, D.; Qiao, J.; Zuegel, J.D. OPCPA front end and contrast optimization for the OMEGA EP kilojoule, picosecond laser. J. Opt. 2015, 17, 094007. [Google Scholar] [CrossRef]
- Papadopoulos, D.; Zou, J.; Le Blanc, C.; Chériaux, G.; Georges, P.; Druon, F.; Mennerat, G.; Ramirez, P.; Martin, L.; Fréneaux, A.; et al. The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics. High Power Laser Sci. Eng. 2016, 4, e34. [Google Scholar] [CrossRef]
- Cheriaux, G.; Antipenkov, R.; Batysta, F.; Borger, T.; Friedman, G.; Greene, J.; Hammond, D.; Heisler, J.; Jochmann, A.; Kepler, M. Progress on ELI-Beamlines 10 PW Laser System. Rev. Laser Eng. 2018, 46, 125. [Google Scholar] [CrossRef] [PubMed]
- Lureau, F.; Matras, G.; Chalus, O.; Derycke, C.; Morbieu, T.; Radier, C.; Casagrande, O.; Laux, S.; Ricaud, S.; Rey, G.; et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability. High Power Laser Sci. Eng. 2020, 8, e43. [Google Scholar] [CrossRef]
- Xu, L.; Yu, L.H.; Chu, Y.X.; Gan, Z.B.; Liang, X.Y.; Li, R.X.; Xu, Z.Z. Trends in ultrashort and ultrahigh power laser pulses based on optical parametric chirped pulse amplification*. Chin. Phys. B 2015, 24, 018704. [Google Scholar] [CrossRef]
- Zeng, X.; Zhou, K.; Zuo, Y.; Zhu, Q.; Su, J.; Wang, X.; Wang, X.; Huang, X.; Jiang, X.; Jiang, D.; et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt. Lett. 2017, 42, 2014–2017. [Google Scholar] [CrossRef]
- Zhu, J.; Xie, X.; Sun, M.; Kang, J.; Yang, Q.; Guo, A.; Zhu, H.; Zhu, P.; Gao, Q.; Liang, X.; et al. Analysis and construction status of SG-II 5PW laser facility. High Power Laser Sci. Eng. 2018, 6, e29. [Google Scholar] [CrossRef]
- Galletti, M.; Archipovaite, G.; Oliveira, P.; Ahmad, M.; Dilworth, E.; Rutherford, N.; Galimberti, M.; Musgrave, I.; Hernandez-Gomez, C. Ultrashort, picosecond OPCPA FrontEnd for the new Vulcan TAP beamline. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 23–27 June 2019; Optica Publishing Group: Washington, DC, USA, 2019; p. cf p 3. [Google Scholar]
- Bromage, J.; Bahk, S.W.; Begishev, I.A.; Dorrer, C.; Guardalben, M.J.; Hoffman, B.N.; Oliver, J.B.; Roides, R.G.; Schiesser, E.M.; Shoup III, M.J.; et al. Technology development for ultraintense all-OPCPA systems. High Power Laser Sci. Eng. 2019, 7, e4. [Google Scholar] [CrossRef]
- Indra, L.; Špaček, A.; Green, J.T.; Bartoníček, J.; Novák, J.; Tykalewicz, B.; Eisenschreiber, J.; Horáček, M.; Naylon, J.A.; Rus, B. Development of L2-DUHA laser front-end for near-IR and mid-IR generation at ELI-Beamlines. In Proceedings of the High-Power, High-Energy Lasers and Ultrafast Optical Technologies, Prague, Czech Republic, 24–27 April 2023; Bakule, P., Haefner, C.L., Hein, J., Butcher, T.J., Eds.; International Society for Optics and Photonics, SPIE: Osaka, Japan, 2023; Volume 12577, p. 125770B. [Google Scholar] [CrossRef]
- Sistrunk, E.; Spinka, T.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Charron, K.; Cupal, J.; Deri, R.; Drouin, M.; et al. All Diode-Pumped, High-repetition-rate Advanced Petawatt Laser System (HAPLS). In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 14–19 May 2017; Optica Publishing Group: Washington, DC, USA, 2017; p. STh1L.2. [Google Scholar] [CrossRef]
- Méndez, C.; Varela, O.; García, E.; Hernández, I.; Ajates, J.; Pisonero, J.D.; Sagredo, J.L.; Olivar, M.; Roso, L. VEGA laser facility beamlines management for pump-probe experiments. In Proceedings of the Fourth International Conference on Applications of Optics and Photonics, Lisbon, Portugal, 31 May–4 June 2019; Costa, M.F.P.C.M.M., Ed.; International Society for Optics and Photonics, SPIE: Osaka, Japan, 2019; Volume 11207, p. 112071Z. [Google Scholar] [CrossRef]
- Mason, P.; Stuart, N.; Phillips, J.; Heathcote, R.; Buck, S.; Wojtusiak, A.; Galimberti, M.; de Faria Pinto, T.; Hawkes, S.; Tomlinson, S.; et al. Progress on Laser Development at the Extreme Photonics Applications Centre. In Proceedings of the Conference on Lasers and Electro-Optics/Europe (CLEO/Europe 2023) and European Quantum Electronics Conference (EQEC 2023), Munich, Germany, 26–30 June 2023; Optica Publishing Group: Washington, DC, USA, 2023; p. ca 8 2. [Google Scholar]
- Kawanaka, J.; Yoshida, H.; Tsubakimoto, K.; Fujioka, K.; Murakami, H.; Fujimoto, Y.; Miyanaga, N.; Azechi, H. Conceptual Design of a Sub-Exa-Watts Laser System “GEKKO-EXA”. Rev. Laser Eng. 2014, 42, 179. [Google Scholar] [CrossRef]
- Kawanaka, J.; Tsubakimoto, K.; Yoshida, H.; Fujioka, K.; Fujimoto, Y.; Tokita, S.; Jitsuno, T.; Miyanaga, N.; Team, G.E.D. Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification. J. Phys. Conf. Ser. 2016, 688, 012044. [Google Scholar] [CrossRef]
- Li, Z.; Kawanaka, J. Laser technique improvement for Exawatt-class peak-power in Japan (invited). Rev. Laser Eng. 2021, 49, 101–105. [Google Scholar] [CrossRef]
- Li, Z.; Kato, Y.; Kawanaka, J. Simulating an ultra-broadband concept for Exawatt-class lasers. Sci. Rep. 2021, 11, 151. [Google Scholar] [CrossRef] [PubMed]
- Bromage, J.; Bahk, S.W.; Bedzyk, M.; Begishev, I.A.; Bucht, S.; Dorrer, C.; Feng, C.; Jeon, C.; Mileham, C.; Roides, R.G.; et al. MTW-OPAL: A technology development platform for ultra-intense optical parametric chirped-pulse amplification systems. High Power Laser Sci. Eng. 2021, 9, e63. [Google Scholar] [CrossRef]
- Khazanov, E.; Shaykin, A.; Kostyukov, I.; Ginzburg, V.; Mukhin, I.; Yakovlev, I.; Soloviev, A.; Kuznetsov, I.; Mironov, S.; Korzhimanov, A.; et al. eXawatt Center for Extreme Light Studies. High Power Laser Sci. Eng. 2023, 11, e78. [Google Scholar] [CrossRef]
- Sun, M.; Kang, J.; Liang, X.; Zhu, H.; Yang, Q.; Gao, Q.; Guo, A.; Zhu, P.; Zhang, P.; Li, L.; et al. Demonstration of a petawatt-scale optical parametric chirped pulse amplifier based on yttrium calcium oxyborate. High Power Laser Sci. Eng. 2023, 11, e2. [Google Scholar] [CrossRef]
- Wang, A.; Xue, P.; Liu, X.; Wang, X.; Yu, L.; Liang, X.; Leng, Y.; Li, R. Characteristics of broadband OPCPA based on DKDP crystals with different deuterations for the SEL-100 PW laser system. Opt. Express 2024, 32, 3597–3605. [Google Scholar] [CrossRef]
- Pestryakov, E.; Petrov, V.; Trunov, V.; Frolov, S.; Kirpichnikov, A.; Bagayev, S.; Kokh, A. Design of high gain OPCPA for multiterawatt and petawatt class systems on large aperture LBO crystals. In Proceedings of the SPIE—The International Society for Optical Engineering, Kazan, Russia, 23–27 August 2010; Volume 7994. [Google Scholar] [CrossRef]
- Yu, L.; Liang, X.; Xu, L.; Li, W.; Peng, C.; Hu, Z.; Wang, C.; Lu, X.; Chu, Y.; Gan, Z.; et al. Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm. Opt. Lett. 2015, 40, 3412–3415. [Google Scholar] [CrossRef] [PubMed]
- Lozhkarev, V.; Freidman, G.; Ginzburg, V.; Khazanov, E.; Palashov, O.; Sergeev, A.; Yakovlev, I. Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd: YLF laser. Laser Phys. 2005, 15, 1319–1333. [Google Scholar]
- Andreev, N.F.; Bespalov, V.I.; Bredikhin, V.I.; Garanin, S.G.; Ginzburg, V.N.; Dvorkin, K.L.; Katin, E.V.; Korytin, A.I.; Lozhkarev, V.V.; Palashov, O.V.; et al. New scheme of a petawatt laser based on nondegenerate parametric amplification of chirped pulses in DKDP crystals. J. Exp. Theor. Phys. Lett. 2004, 79, 144–147. [Google Scholar] [CrossRef]
- Guo, X.; Tu, X.; Tokita, S.; Zheng, Y.; Kawanaka, J. Conceptually designed high-repetition sub-petawatt infrared laser via yttrium calcium oxoborate crystal based optical parametric chirped pulse amplification. Laser Phys. 2018, 28, 085402. [Google Scholar] [CrossRef]
- Li, Z.; Leng, Y.; Li, R. Further Development of the Short-Pulse Petawatt Laser: Trends, Technologies, and Bottlenecks. Laser Photonics Rev. 2023, 17, 2100705. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Zhou, B.; Yuan, P.; Xie, G.; Xiong, K.; Zheng, Y.; Zhu, H.; Qian, L. Broadband, efficient, and robust quasi-parametric chirped-pulse amplification. Opt. Express 2017, 25, 25149–25164. [Google Scholar] [CrossRef] [PubMed]
- Kroll, N.M. Parametric Amplification in Spatially Extended Media and Application to the Design of Tuneable Oscillators at Optical Frequencies. Phys. Rev. 1962, 127, 1207–1211. [Google Scholar] [CrossRef]
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 55, 447–449. [Google Scholar] [CrossRef]
- Eichner, T.; Hülsenbusch, T.; Dirkwinkel, J.; Lang, T.; Winkelmann, L.; Palmer, G.; Maier, A.R. Spatio-spectral couplings in saturated collinear OPCPA. Opt. Express 2022, 30, 3404–3415. [Google Scholar] [CrossRef]
- Wang, T.J.; Major, Z.; Ahmad, I.; Trushin, S.A.; Krausz, F.; Karsch, S. Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation. Appl. Phys. B 2010, 100, 207–214. [Google Scholar] [CrossRef]
- Kühn, S.; Dumergue, M.; Kahaly, S.; Mondal, S.; Füle, M.; Csizmadia, T.; Farkas, B.; Major, B.; Várallyay, Z.; Cormier, E.; et al. The ELI-ALPS facility: The next generation of attosecond sources. J. Phys. At. Mol. Opt. Phys. 2017, 50, 132002. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Lu, X.; Chen, J.; Long, Y.; Li, W.; Chen, H.; Chen, X.; Bai, P.; Li, Y.; et al. 13.4 fs, 0.1 Hz OPCPA Front End for the 100 PW-Class Laser Facility. Ultrafast Sci. 2022, 2022, 9894358. [Google Scholar] [CrossRef]
- Akbari, R.; Major, A. Optical, spectral and phase-matching properties of BIBO, BBO and LBO crystals for optical parametric oscillation in the visible and near-infrared wavelength ranges. Laser Phys. 2013, 23, 035401. [Google Scholar] [CrossRef]
- Turcicova, H.; Novak, O.; Muzik, J.; Stepankova, D.; Smrz, M.; Mocek, T. Laser induced damage threshold (LIDT) of beta-barium borate (BBO) and cesium lithium borate (CLBO)—Overview. Opt. Laser Technol. 2022, 149, 107876. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Huang, J.Y.; Shen, Y.R.; Chen, C. Optical parametric generation and amplification in barium borate and lithium triborate crystals. J. Opt. Soc. Am. B 1993, 10, 1758–1764. [Google Scholar] [CrossRef]
- Herrmann, D.; Tautz, R.; Tavella, F.; Krausz, F.; Veisz, L. Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses. Opt. Express 2010, 18, 4170–4183. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Zhang, Q.; Lan, P.; Lu, P. Generation of few-cycle infrared pulses from a degenerate dual-pump OPCPA. Opt. Express 2014, 22, 5544–5557. [Google Scholar] [CrossRef]
- Hawley-Fedder, R.A.; Geraghty, P.; Locke, S.N.; McBurney, M.S.; Runkel, M.J.; Suratwala, T.I.; Thompson, S.L.; Wegner, P.J.; Whitman, P.K. NIF Pockels cell and frequency conversion crystals. In Proceedings of the Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility; Lane, M.A., Wuest, C.R., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2004; Volume 5341, pp. 121–126. [Google Scholar] [CrossRef]
- Sung, J.H.; Lee, H.W.; Yoo, J.Y.; Yoon, J.W.; Lee, C.W.; Yang, J.M.; Son, Y.J.; Jang, Y.H.; Lee, S.K.; Nam, C.H. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett. 2017, 42, 2058–2061. [Google Scholar] [CrossRef] [PubMed]
- Rothhardt, J.; Demmler, S.; Hädrich, S.; Peschel, T.; Limpert, J.; Tünnermann, A. Thermal effects in high average power optical parametric amplifiers. Opt. Lett. 2013, 38, 763–765. [Google Scholar] [CrossRef]
- Tang, D.; Ma, J.; Wang, J.; Zhou, B.; Xie, G.; Yuan, P.; Zhu, H.; Qian, L. Temperature- and wavelength-insensitive parametric amplification enabled by noncollinear achromatic phase-matching. Sci. Rep. 2016, 6, 36059. [Google Scholar] [CrossRef]
- Bagnoud, V.; Zuegel, J.D.; Forget, N.; Blanc, C.L. High-dynamic-range temporal measurements of short pulses amplified by OPCPA. Opt. Express 2007, 15, 5504–5511. [Google Scholar] [CrossRef]
- Baxter, G.W.; Haub, J.G.; Orr, B.J. Backconversion in a pulsed optical parametric oscillator: Evidence from injection-seeded sidebands. J. Opt. Soc. Am. B 1997, 14, 2723–2730. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Yuan, P.; Xie, G.; Qian, L. Origin and suppression of back conversion in a phase-matched nonlinear frequency down-conversion process. Chin. Opt. Lett. 2017, 15, 021901. [Google Scholar]
- Available online: https://www.newlightphotonics.com/v1/ (accessed on 3 April 2024).
- Phillips, J.P.; Banerjee, S.; Smith, J.; Fitton, M.; Davenne, T.; Ertel, K.; Mason, P.; Butcher, T.; Vido, M.D.; Greenhalgh, J.; et al. High energy, high repetition rate, second harmonic generation in large aperture DKDP, YCOB, and LBO crystals. Opt. Express 2016, 24, 19682–19694. [Google Scholar] [CrossRef]
- Yang, S.; Liang, X.; Xie, X.; Yang, Q.; Tu, X.; Zheng, Y.; Zhang, X.; Zhang, Y.; Guo, A.; Zhu, P.; et al. Ultra-broadband high conversion efficiency optical parametric chirped-pulse amplification based on YCOB crystals. Opt. Express 2020, 28, 11645–11651. [Google Scholar] [CrossRef]
- Li, G.; Zheng, G.; Qi, Y.; Yin, P.; Tang, E.; Li, F.; Xu, J.; Lei, T.; Lin, X.; Zhang, M.; et al. Rapid growth of a large-scale (600 mm aperture) KDP crystal and its optical quality. High Power Laser Sci. Eng. 2014, 2, e2. [Google Scholar] [CrossRef]
- Xu, M.; Liu, B.; Zhang, L.; Ren, H.; Gu, Q.; Sun, X.; Wang, S.; Xu, X. Progress on deuterated potassium dihydrogen phosphate (DKDP) crystals for high power laser system application. Light Sci. Appl. 2022, 11, 241. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, M.; Hernandez-Gomez, C.; Musgrave, I.; Ross, I.; Winstone, T. Influence of the deuteration level of the KD*P crystal on multi-PW class OPCPA laser. Opt. Commun. 2013, 309, 80–84. [Google Scholar] [CrossRef]
- Cai, X.; Lin, X.; Li, G.; Lu, J.; Hu, Z.; Zheng, G. Rapid growth and properties of large-aperture 98%-deuterated DKDP crystals. High Power Laser Sci. Eng. 2019, 7, e46. [Google Scholar] [CrossRef]
- Galimberti, M.; Boyle, A.; Musgrave, I.O.; Oliveira, P.; Pepler, D.; Shaikh, W.; Winstone, T.B.; Wyatt, A.; Hernandez–Gomez, C. Spectral gain investigation of large size OPCPA based on partially deuterated KDP. EPJ Web Conf. 2018, 167, 01006. [Google Scholar] [CrossRef]
- Ross, I.; Matousek, P.; Towrie, M.; Langley, A.; Collier, J. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt. Commun. 1997, 144, 125–133. [Google Scholar] [CrossRef]
- Ross, I.N.; Matousek, P.; Towrie, M.; Langley, A.J.; Collier, J.L.; Danson, C.N.; Neely, D.; Osvay, K. Optical Parametric Chirped Pulse Amplifiers for the Generation of Extremes in Power. Intensity and Pulse Duration. In Proceedings of the Conference on Lasers and Electro-Optics-Europe, Glasgow, UK, 14–18 September 1998; Optica Publishing Group: Washington, DC, USA, 1998; p. CTuI77. [Google Scholar] [CrossRef]
- Collier, J.; Edwards, C.; Danson, C.; Hutchinson, M.; Neely, D.; Wyborn, B. Vulcan; a Petawatt Laser Facility for 1021 Wcm−2 experiments. In Proceedings of the Conference on Lasers and Electro-Optics Europe, Nice, France, 10–15 September 2000; Optica Publishing Group: Washington, DC, USA, 2000; p. CWB1. [Google Scholar]
- Edwards, C.B.; Allott, R.M.; Collier, J.L.; Danson, C.N.; Hutchinson, M.H.R.; Neely, D.; Wyborn, B.E. Vulcan upgrade: A petawatt laser facility for experiments at 1021 Wcm−2. In Proceedings of the ECLIM 2000: 26th European Conference on Laser Interaction with Matter, Prague, Czech Republic, 12–16 June 2000; Kalal, M., Rohlena, K., Sinor, M., Eds.; International Society for Optics and Photonics, SPIE: Osaka, Japan, 2001; Volume 4424, pp. 63–69. [Google Scholar] [CrossRef]
- Hernandez-Gomez, C.; Collier, J.; Csatari, M.; Smith, J. Commissioning of the Vulcan OPCPA preamplifier. In STFC Central Laser Facility Annual Report; Harwell Campus: Oxford, UK, 2001. [Google Scholar]
- Ross, I.; Collier, J.; Chekhlov, O.; Notley, M.; Hernandez-Gomez, C.; Danson, C.; Neely, D.; Matousek, P.; Hancock, S.; Cardoso, L. Vulcan OPCPA–Results from the first experiment. In STFC Central Laser Facility Annual Report; Harwell Campus: Oxford, UK, 2003. [Google Scholar]
- Musgrave, I.; Hernandez-Gomez, C.; Canny, D.; Heathcote, R.; Clarke, R.; Collier, J.; Bandyopadhyay, S. Nanosecond contrast measurements of the Vulcan Petawatt facility. In STFC Central Laser Facility Annual Report; Harwell Campus: Oxford, UK, 2004. [Google Scholar]
- Hernandez-Gomez, C.; Canny, D.; Musgrave, I.; Collier, J. Picosecond contrast measurement of the Vulcan Petawatt facility. In STFC Central Laser Facility Annual Report; Harwell Campus: Oxford, UK, 2004. [Google Scholar]
- Hernandez-Gomez, C.; Musgrave, I.O.; Hawkes, S.J.; Fell, B.; Winstone, T.B.; Clarke, R.J.; Danson, C.N. Pulse length optimization for the Petawatt performance of the Vulcan laser facility. In STFC Central Laser Facility Annual Report; Harwell Campus: Oxford, UK, 2005. [Google Scholar]
- Musgrave, I.; Hernandez-Gomez, C.; Canny, D.; Collier, J.; Heathcote, R. Minimization of the impact of a broad bandwidth high-gain nonlinear preamplifier to the amplified spontaneous emission pedestal of the Vulcan petawatt laser facility. Appl. Opt. 2007, 46, 6978–6983. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.; Musgrave, I.; Galimberti, M.; Shaikh, W.; Lancaster, K.; Costello, B.; Frackiewicz, A.; Heathcote, R. Close-in Contrast Measurements of the New ps OPCPA Front End. In STFC Central Laser Facility Annual Report; Harwell Campus: Oxford, UK, 2008. [Google Scholar]
- Chekhlov, O.; Collier, J.; Hernandez-Gomez, C.; Matousek, P.; Musgrave, I.; Ross, I.; Tang, Y.; Winstone, T. Development of 10 PW OPCPA Capability on the Vulcan Laser. In Proceedings of the CLEO/Europe and IQEC 2007 Conference Digest, Munich, Germany, 17–22 June 2007; Optica Publishing Group: Washington, DC, USA, 2007; p. CG6 3. [Google Scholar]
- Hernandez-Gomez, C.; Blake, S.P.; Chekhlov, O.; Clarke, R.J.; Dunne, A.M.; Galimberti, M.; Hancock, S.; Heathcote, R.; Holligan, P.; Lyachev, A.; et al. The Vulcan 10 PW project. J. Phys. Conf. Ser. 2010, 244, 032006. [Google Scholar] [CrossRef]
- Lyachev, A.; Chekhlov, O.; Collier, J.; Clarke, R.J.; Galimberti, M.; Hernandez-Gomez, C.; Matousek, P.; Musgrave, I.O.; Neely, D.; Norreys, P.A.; et al. The 10 PW OPCPA Vulcan Laser Upgrade. In Proceedings of the Advances in Optical Materials; Optica Publishing Group: Washington, DC, USA, 2011; p. HThE2. [Google Scholar] [CrossRef]
- Tang, Y.; Ross, I.N.; Hernandez-Gomez, C.; New, G.H.C.; Musgrave, I.; Chekhlov, O.V.; Matousek, P.; Collier, J.L. Optical parametric chirped-pulse amplification source suitable for seeding high-energy systems. Opt. Lett. 2008, 33, 2386–2388. [Google Scholar] [CrossRef]
- Shaikh, W.; Oliveira, P.; Musgrave, I.; Galimberti, M.; Wyatt, A.; Hernandez-Gomes, C. A stable ultra-broadband OPG/OPA source for the testing of 20 Petawatt Optical Parametric Chirped Pulse Amplifiers. In Proceedings of the Advanced Solid State Lasers; Optica Publishing Group: Washington, DC, USA, 2016; p. JTh2A–29. [Google Scholar]
- Shaikh, W.; Galimberti, M.; Oliveira, P.; Musgrave, I.; Wyatt, A.; Pepler, D.; Boyle, A.; Winstone, T.; Hernandez-Gomez, C. Technology Development for Multi-PW CPA and OPCPA Systems—Demonstration of Broad Bandwidth to the Joule Level in Deuterated KDP. In Proceedings of the Laser Congress 2017 (ASSL, LAC), Nagoya, Japan, 1–5 October 2017; Optica Publishing Group: Washington, DC, USA, 2017; p. JTh2A.5. [Google Scholar] [CrossRef]
- Lyachev, A.; Tang, Y.; Musgrave, I.; Hernandez-Gomez, C.; Ross, I.; Chekhlov, O.; Collier, J.; Matousek, P. 10 PW Front-End Characterization. In STFC Central Laser Facility Annual Report; Harwell Campus: Oxford, UK, 2008. [Google Scholar]
- Boyle, A.; Galimberti, M. 10PW Short Pulse Laser Diagnostics. In STFC Central Laser Facility Annual Report; Harwell Campus: Oxford, UK, 2011. [Google Scholar]
- Archipovaite, G.; Galletti, M.; Oliveira, P.; Galimberti, M.; Frackiewicz, A.; Musgrave, I.; Hernandez-Gomez, C. 880 nm, 22 fs, 1 mJ pulses at 100 Hz as an OPCPA front end for Vulcan laser facility. Opt. Commun. 2020, 474, 126072. [Google Scholar] [CrossRef]
- Buck, S.; Archipovaite, G.; Booth, N.; Galimberti, M.; Galletti, M.; Musgrave, I.; Oliveira, P.; Stallwood, A.; Winstone, T.; Woodward, M.; et al. Development Update of an Ultra broadband, all OPCPA Petawatt beamline to the Vulcan laser facility. In Proceedings of the Conference on Lasers and Electro-Optics; Optica Publishing Group: Washington, DC, USA, 2022; p. SM5E.3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buck, S.; Oliveira, P.; Angelides, T.; Galimberti, M. A Review of Optical Parametric Amplification at the Vulcan Laser Facility. Photonics 2024, 11, 495. https://doi.org/10.3390/photonics11060495
Buck S, Oliveira P, Angelides T, Galimberti M. A Review of Optical Parametric Amplification at the Vulcan Laser Facility. Photonics. 2024; 11(6):495. https://doi.org/10.3390/photonics11060495
Chicago/Turabian StyleBuck, Samuel, Pedro Oliveira, Theodoros Angelides, and Marco Galimberti. 2024. "A Review of Optical Parametric Amplification at the Vulcan Laser Facility" Photonics 11, no. 6: 495. https://doi.org/10.3390/photonics11060495
APA StyleBuck, S., Oliveira, P., Angelides, T., & Galimberti, M. (2024). A Review of Optical Parametric Amplification at the Vulcan Laser Facility. Photonics, 11(6), 495. https://doi.org/10.3390/photonics11060495