Broadband High-Linear FMCW Light Source Based on Spectral Stitching
Abstract
:1. Introduction
2. Materials and Methods
2.1. FMCW Laser Ranging Method
2.2. Wideband Light Source Implementation Method
2.2.1. Spectral Stitching
2.2.2. Pre-Correction Iterative Algorithm
2.2.3. Power Equalization
2.2.4. Phase-Locked Loop
3. Results and Discussion
3.1. Single-Laser Experiment
3.2. Bandwidth Expansion Experiment
3.3. Distance Measuring Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aksarin, S.; Ganin, D.; Feng, C.; Smolovik, M.; Zott, A.; Davydenko, V. Optimizing of laser source parameters for FMCW automotive LiDARs. In Proceedings of the Conference on Photonic Instrumentation Engineering X, San Francisco, CA, USA, 30 January–1 February 2023; SPIE: Washington, DC, USA, 2023; p. 124280X. [Google Scholar] [CrossRef]
- Gogoi, T.; Kumar, R. Design and development of a laser warning sensor prototype for airborne application. Def. Sci. J. 2023, 73, 332–340. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, F.Y. Displacement monitoring requirements and laser displacement monitoring technology of bridges with short and medium spans. Appl. Sci. 2022, 12, 9663. [Google Scholar] [CrossRef]
- Wang, B.J.; Guo, Z.W.; Shen, Z.M.; Xu, H.; Liu, L.; Li, J.X. Underwater 3D imaging utilizing 520 nm chaotic lidar. J. Russ. Laser Res. 2020, 41, 399–405. [Google Scholar] [CrossRef]
- Han, X.D.; Wu, X.L.; Zhao, H.C.; Lin, X.D.; Li, M.; Wu, Z.G. Application of optical switching technology in a lunar laser ranging system based on a superconducting detector. Appl. Opt. 2023, 62, 5348–5354. [Google Scholar] [CrossRef] [PubMed]
- Ipatov, A.V.; Vedeshin, L.A. Laser applications in ground-based and space observations (marking 60 years since the first experiments on lunar laser ranging). Izv. Atmos. Ocean. Phys. 2021, 57, 1794–1796. [Google Scholar] [CrossRef]
- Chabe, J.; Courde, C.; Torre, J.M.; Bouquillon, S.; Bourgoin, A.; Aimar, M.; Albanese, D.; Chauvineau, B.; Mariey, H.; Martinot-Lagarde, G.; et al. Recent progress in lunar laser ranging at grasse laser ranging station. Earth Space Sci. 2019, 7, e2019EA000785. [Google Scholar] [CrossRef]
- Meng, W.D.; Zhang, H.F.; Deng, H.R.; Tang, K.; Wu, Z.B.; Wang, Y.R.; Wu, G.; Zhang, Z.P.; Chen, X.Y. 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection. Acta Phys. Sin. 2020, 69, 019502. [Google Scholar] [CrossRef]
- Vizbaras, A.; Simonyte, I.; Droz, S.; Torcheboeuf, N.; Miasojedovas, A.; Trinkunas, A.; Buciunas, T.; Dambrauskas, Z.; Gulbinas, A.; Boiko, D.L.; et al. GaSb swept-wavelength lasers for biomedical sensing applications. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1501812. [Google Scholar] [CrossRef]
- Jeff, P.; Logan, C.; Kevin, W. Fiber laser design for biomedical applications. In Proceedings of the Conference on Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXIII, San Francisco, CA, USA, 28–30 January 2023; SPIE: Washington, DC, USA, 2023; p. 123720C. [Google Scholar] [CrossRef]
- Barber, Z.W.; Babbitt, W.R.; Kaylor, B.; Reibel, R.R.; Roos, P.A. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar. Appl. Opt. 2010, 49, 213–219. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, F.M.; Shi, C.Z.; Qu, X.H. High-precision frequency estimation for frequency modulated continuous wave laser ranging using the multiple signal classification method. Appl. Opt. 2017, 56, 6956–6961. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Zhang, L.; Xie, W.L.; Cheng, R.; Liu, Z.W.Y.; Wei, W.; Dong, Y. Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source. Opt. Express 2019, 27, 19359–19368. [Google Scholar] [CrossRef]
- Yin, F.F.; Yin, Z.K.; Xie, X.Z.; Dai, Y.T.; Xu, K. Broadband radio-frequency signal synthesis by photonic-assisted channelization. Opt. Express 2021, 29, 17839–17848. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.Q.; Zhang, X.P.; Liu, C.Y.; Zeng, H.N.; Li, W.Z. Wideband reconfigurable signal generation based on recirculating frequency-shifting using an optoelectronic loop. Opt. Express 2021, 29, 28643–28651. [Google Scholar] [CrossRef]
- Wen, L.; Wang, Z.Y.; Yuan, Q.; Yang, T.X.; Ge, C.F.; Hu, D.N.; Qin, J.Q. Tunable linear-step-swept light source based on time-delayed spectrum stitching technique. In Proceedings of the Conference on Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XIII, San Francisco, CA, USA, 3–6 February 2020; SPIE: Washington, DC, USA, 2020; Volume 11279, p. 1127924. [Google Scholar] [CrossRef]
- Wang, X.C.; Ma, J.X.; Zhang, Q.; Xin, X.J. Generation of linear frequency-modulated signals with improved time-bandwidth product based on an optics frequency comb. Appl. Opt. 2019, 58, 3222–3228. [Google Scholar] [CrossRef] [PubMed]
- Li, J.D.; Xue, X.X.; Yang, B.F.; Wang, M.A.; Li, S.Y.; Zheng, X.P. Broadband linear frequency-modulated waveform generation based on optical frequency comb assisted spectrum stitching. Opt. Express 2022, 30, 24145–24154. [Google Scholar] [CrossRef] [PubMed]
- Hefferman, G.; Chen, Z.; Wei, T. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation. Rev. Sci. Instrum. 2017, 88, 075104. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Zhang, F.M.; Qu, X.H. High-resolution frequency-modulated continuous-wave LiDAR using multiple laser sources simultaneously scanning. J. Lightw. Technol. 2023, 41, 367–373. [Google Scholar] [CrossRef]
- Zhang, X.B.Q.; Kong, M.; Guo, T.T.; Zhao, J.; Wang, D.D.; Liu, L.; Liu, W.; Xu, X.K. Frequency modulation nonlinear correction and range-extension method based on laser frequency scanning interference. Appl. Opt. 2021, 60, 3446–3451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.S.; Jazz, P.; Ming, C.W. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR. Opt. Express 2019, 27, 9965–9974. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, Y.T.; Yao, J.Q. Rapid linear frequency swept frequency-modulated continuous wave laser source using iterative pre-distortion algorithm. Remote Sens. 2022, 14, 3455. [Google Scholar] [CrossRef]
Experimental Stage | Before Extending the Sweep Bandwidth d1/mm | After Extending the Sweep Bandwidth d2/mm |
---|---|---|
1 | 19.903 | 19.898 |
2 | 19.329 | 19.953 |
3 | 20.531 | 19.743 |
4 | 20.237 | 20.245 |
5 | 20.332 | 20.116 |
6 | 20.261 | 20.042 |
average error | 0.01628 | 0.00673 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Zhou, X.; Zhao, H.; Xu, S.; Wu, Z.; Yuan, G.; Wang, Z. Broadband High-Linear FMCW Light Source Based on Spectral Stitching. Photonics 2024, 11, 477. https://doi.org/10.3390/photonics11050477
Sun L, Zhou X, Zhao H, Xu S, Wu Z, Yuan G, Wang Z. Broadband High-Linear FMCW Light Source Based on Spectral Stitching. Photonics. 2024; 11(5):477. https://doi.org/10.3390/photonics11050477
Chicago/Turabian StyleSun, Liang, Xinguang Zhou, Haohao Zhao, Shichang Xu, Zihan Wu, Guohui Yuan, and Zhuoran Wang. 2024. "Broadband High-Linear FMCW Light Source Based on Spectral Stitching" Photonics 11, no. 5: 477. https://doi.org/10.3390/photonics11050477
APA StyleSun, L., Zhou, X., Zhao, H., Xu, S., Wu, Z., Yuan, G., & Wang, Z. (2024). Broadband High-Linear FMCW Light Source Based on Spectral Stitching. Photonics, 11(5), 477. https://doi.org/10.3390/photonics11050477