Conversion and Active Control between BIC and Absorber in Terahertz Metasurface
Abstract
:1. Introduction
2. Design and Methods
3. The Performance of BIC Conversion to Quasi-BIC
4. Performance of BIC Transabsorbers
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.Q.; Song, Z.Y. Tailoring terahertz wavefront with state switching in VO2 Pancharatnam–Berry metasurfaces. Opt. Laser Technol. 2023, 157, 108764. [Google Scholar] [CrossRef]
- Mei, J.S.; Song, C.L.; Shu, C. Active manipulation of dual transparency windows in dark–bright–dark mode coupling graphene metamaterial. Opt. Commun. 2021, 488, 126851. [Google Scholar] [CrossRef]
- Zhao, H.L.; Ren, Y.; Fang, L.; Lin, H. Electromagnetic induced transparency in graphene waveguide structure for Terahertz application. Results Phys. 2020, 16, 102971. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.H.; Tang, H.W.; Shen, T.; Zhang, H. Dual-tunable and high-efficiency multifunctional terahertz device based on black phosphorus and graphene metasurface. Opt. Mater. 2024, 149, 115065. [Google Scholar] [CrossRef]
- Yin, Y.J.; Lv, Y.; Sun, Y.Z.; Zhang, H.F. Tunable conversion of electromagnetically induced transparency to electromagnetically induced absorption based on vanadium dioxide metastructure. Optik 2024, 296, 171554. [Google Scholar] [CrossRef]
- Hua, J.C. Two-color electromagnetically induced transparency generated slow light in double-mechanical-mode coupling carbon nanotube resonators. IScience 2024, 27, 109328. [Google Scholar]
- Jahan, I.M.; Faruque, I.R.M.; Mugren, A.K. Polarization-incident angle independent metamaterial wave absorber for enhanced electromagnetic energy harvesting in ultraviolet-B, visible spectrum, and near-infrared frequency range. Mater. Today Commun. 2024, 38, 108229. [Google Scholar] [CrossRef]
- Gao, E.; Cao, G.T.; Deng, Y.; Li, H.J.; Chen, X.S.; Li, G.H. Perfect absorption frequency modulation, optical switching and slow-light multifunctional integrated device based on plasmon-induced absorption. Opt. Laser Technol. 2024, 168, 109840. [Google Scholar] [CrossRef]
- Ain, K.; Putra, A.P.; Rahma, O.N.; Hikmawati, D.; Rahmatillah, A.; Rahmatillah, C.A.C. Electrical Impedance Spectroscopy as a Potential Tool for Detecting Bone Porosity. Sens. Actuators A Phys. 2024, 370, 115252. [Google Scholar] [CrossRef]
- Kim, K.H.; Cho, M.C. Tunable multiband circular dichroism and asymmetric transmission enabled by chiral quasi-BICs in dielectric metasurfaces covered with graphene. Opt. Mater. 2024, 148, 114798. [Google Scholar] [CrossRef]
- Wang, T.Y.; Liu, S.Q.; Zhang, J.H.; Xu, L.; Yang, M.Y.; Han, B.; Ma, D.; Jiang, S.J.; Jiao, Q.B.; Tan, X. Highly sensitive polarization-tunable Fano resonant metasurface excited by BICs for refractive index detection. Results Phys. 2024, 58, 107451. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.Z.; Sun, G.C.; Yao, Z.Y.; Zhang, K.; Shi, W. Tunable terahertz bound state in the continuum in graphene metagrating. Opt. Commun. 2023, 541, 129549. [Google Scholar] [CrossRef]
- Liu, C.X.; Liu, W.Y.; Li, W.; Gu, Y.X.; Liu, L.; Zhou, Y.R.; Xing, E.B.; Tang, J.; Liu, J. Design of simple, ultrasensitive, and tunable teraherz metasensors based on quasi-BIC. Opt. Commun. 2024, 550, 129967. [Google Scholar] [CrossRef]
- Zhang, C.; Nie, X.M.; Liu, Z.T.; Chen, Z.M.; Ma, C.Y.; Yue, F.Y.; Wang, L.; He, Z.X. High resolution UV spectral imaging and bio-detection with magnetic dipole quasi-BIC resonant dielectric metasurfaces. Opt. Commun. 2023, 530, 129173. [Google Scholar] [CrossRef]
- Morales, R.C.; Kamali, K.Z.; Xu, L.; Miroshnichenko, A.; Rahmani, M.; Neshev, D. 11—Nonlinear phenomena empowered by resonant dielectric nanostructures. In Nanophotonics, All-Dielectric Nanophotonics; Shalin, A.S., Valero, A.C., Miroshnichenko, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 329–364. [Google Scholar]
- Shi, W.J.; Wang, Z.L.; Zhang, C.C.; Zhang, C.F.; Li, W.; Liu, H.J. Enhanced optical nonlinearity of epsilon-near-zero metasurface by quasi-bound state in the continuum. Mater. Today Nano 2024, 26, 100474. [Google Scholar] [CrossRef]
- Wang, D.D.; Tian, J.K.; Ma, T.; Zhang, Y.; Yue, S. Terahertz modulators based on VO2–metal hybridized metamaterials for free switching between BIC and quasi-BIC states. Opt. Commun. 2024, 551, 130040. [Google Scholar] [CrossRef]
- Li, X.M.; Feng, H.; Yun, M.J.; Wang, Z.; Hu, Y.G.; Gu, Y.J.; Liu, F.H.; Wu, W.P. Polarization-independent and all-optically modulated multiband metamaterial coherent perfect absorber. Opt. Laser Technol. 2023, 166, 109644. [Google Scholar] [CrossRef]
- Li, J.S.; Xue, Y.Y.; Guo, F.L. Triple frequency bands terahertz metasurface sensor based on EIT and BIC effects. Opt. Commun. 2024, 554, 130225. [Google Scholar] [CrossRef]
- Liu, X.Y.; Li, F.Y.; Li, Y.X.; Tang, T.T.; Liao, Y.L.; Lu, Y.C.; Wen, Q.Y. Terahertz metasurfaces based on bound states in the continuum (BIC) for high-sensitivity refractive index sensing. Optik 2022, 261, 169248. [Google Scholar] [CrossRef]
- Duan, B.; Liu, S.Y.; Liu, X.; Yu, X.C.; Wang, C.; Yang, D.Q. High-Q quasi-BIC in photonic crystal nanobeam for ultrahigh sensitivity refractive index sensing. Results Phys. 2023, 47, 106304. [Google Scholar] [CrossRef]
- Li, X.; Liu, D.; Huo, Y.Y.; Yue, Q.Y.; Ning, T.Y. Low-voltage electro-optic switching and modulation of second harmonic generation in lithium niobate resonant waveguide gratings assisted by quasi-BICs. Opt. Laser Technol. 2023, 160, 109083. [Google Scholar] [CrossRef]
- Li, F.Y.; Li, Y.X.; Tang, T.T.; Liao, Y.L.; Lu, Y.C.; Liu, X.Y.; Wen, Q.Y. Metal-graphene hybrid terahertz metasurfaces based on bound states in the continuum (BIC) and quasi-BIC for dynamic near-field imaging. J. Alloys Compd. 2022, 928, 167232. [Google Scholar] [CrossRef]
- Kim, K.H.; Cho, M.C. Extremely high-Q quasi-BICs induced by simultaneously broken out-of- and in-plane symmetries in dielectric metasurfaces of low-index materials. Opt. Commun. 2023, 535, 129356. [Google Scholar] [CrossRef]
- Ghanekar, A.; Shrewsbury, B.K.; Hsu, C.W.; Kapadia, R.; Povinelli, M.L. Electro-optic symmetry breaking of BIC modes for tunable infrared emissivity. Mater. Today Phys. 2023, 35, 101113. [Google Scholar] [CrossRef]
- Yan, D.X.; Zhao, C.C.; Qiu, Y.; Li, X.J.; Zhang, L.; Li, J.J. Efficient second harmonic generation from nonlinear one-dimensional meta-grating metasurface under vertically incident pump laser excitation. Infrared Phys. Technol. 2024, 136, 105005. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, X.; Wang, K.N.; Qian, L.Y. Electrically tunable dual-channel absorber based on a graphene integrated slanted grating cavity. Opt. Commun. 2024, 559, 130406. [Google Scholar] [CrossRef]
- Qiu, Y.; Yan, D.X.; Li, X.J.; Zhang, L.; Li, J.J. Highly efficient second harmonic generation assisted by the quasi-bound states in the continuum from AlGaAs meta-gratings. Opt. Commun. 2023, 546, 129772. [Google Scholar] [CrossRef]
- Tang, L.C.; Chen, J.X.; Tang, T.; Wang, L.; Xiong, Z.G. Actively modulating near-infrared absorption of monolayer graphene in a compound grating-coupled waveguide structure. Phys. E Low-Dimens. Syst. Nanostructures 2024, 158, 115889. [Google Scholar] [CrossRef]
- Hou, B.; Li, Z.Y.; He, L.; Yi, Z.; Song, Q.J.; Yang, H.; Yi, Y.G.; Li, H.L. Enhanced quasi-BIC refractive index sensing based on controlling the Fermi energy of Dirac semimetal metasurface. Opt. Laser Technol. 2023, 164, 109537. [Google Scholar] [CrossRef]
- Zhang, F.L.; Huang, X.C.; Zhao, Q.; Chen, L.; Wang, Y.; Li, Q.; He, X.; Li, C.; Chen, K. Fano resonance of an asymmetric dielectric wire pair. Appl. Phys. Lett. 2014, 105, 172901. [Google Scholar] [CrossRef]
- Lim, W.X.; Singh, R. Universal behaviour of high-Q Fano resonances in metamaterials: Terahertz to near-infrared regime. Nano Converg. 2018, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Fedotov, V.A.; Rose, M.; Prosvirnin, S.L.; Papasimakis, N.; Zheludev, N.I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 2007, 99, 147401. [Google Scholar] [CrossRef] [PubMed]
- Campione, S.; Liu, S.; Basilio, L.I.; Warne, L.K.; Langston, W.L.; Luk, T.S.; Wendt, J.R.; Reno, J.L.; Keeler, G.A.; Brener, L.; et al. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces. ACS Photonics 2016, 32, 362–2367. [Google Scholar] [CrossRef]
- Islam, O.; Anik, M.; Hussayeen, K.; Shakib, S.H.; Niloy, N.H.; Talukder, H.; Biswas, S.K. Bound state in the continuum supported asymmetric dome-shaped dielectric metasurface: Crossing and avoided crossing of transmission with applications. Opt. Laser Technol. 2024, 174, 110634. [Google Scholar] [CrossRef]
- Vabishchevich, P.P.; Liu, S.; Sinclair, M.B.; Keeler, G.A.; Peake, G.M.; Breber, L. Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces. ACS Photonics 2018, 5, 1685–1690. [Google Scholar] [CrossRef]
- Tuz, V.R.; Khardikov, V.V.; Kupriianov, A.S.; Domina, K.L.; Xu, S.; Wang, H.; Sun, H.B. High-quality trapped modes in all-dielectric metamaterials. Opt. Express 2018, 26, 2905–2916. [Google Scholar] [CrossRef] [PubMed]
- Cen, W.Y.; Lang, T.T.; Wang, J.F.; Xiao, M.Y. High-Q Fano Terahertz resonance based on bound states in the continuum in All-dielectric metasurface. Appl. Surf. Sci. 2022, 575, 151723. [Google Scholar] [CrossRef]
- Zhao, X.G.; Chen, C.X.; Kaj, K.L.; Hammock, L.; Huang, Y.W.; Averitt, R.D.; Zhang, X. Terahertz investigation of bound states in the continuum of metallic metasurfaces. Optica 2020, 7, 1548–1554. [Google Scholar] [CrossRef]
- Wang, Q.; Li, B.X.; Zeng, L.L.; Yang, Q.L.; Zhang, X.J.; Wen, R.Q.; Deng, C.S. Switchable quadruple narrowband to broadband terahertz perfect absorber based on graphene and VO2 metamaterials. Diam. Relat. Mater. 2024, 142, 110832. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, G.; Zhang, X.; Li, M.C.; Miao, F.J.; Gao, Y.C. Terahertz multi-band absorber and dual-bandwidth polarization converter based on VO2 and graphene. Results Phys. 2023, 53, 107006. [Google Scholar] [CrossRef]
- Ri, K.J.; Kim, J.S.; Kim, J.H.; Ri, C.H. Tunable triple-broadband terahertz metamaterial absorber using a single VO2 circular ring. Opt. Commun. 2023, 542, 129573. [Google Scholar] [CrossRef]
- Zhang, L.W.; Liu, W.F.; Cencillo-Abad, P.; Wang, Q.; Huang, X.; Leng, Y.M. A tunable broadband polarization-independent metamaterial terahertz absorber based on VO2 and Dirac semimetal. Opt. Commun. 2023, 542, 129602. [Google Scholar] [CrossRef]
- Duan, G.Y.; Wu, Y.K.; Zhu, H.X.; Zhang, X.Y.; Wang, B.X. Triple-band tunable terahertz metamaterial absorber enabled by surface design of goggles-like structure using two identical VO2 square frames connected by a VO2 horizontal connecting strip. Results Opt. 2023, 10, 100370. [Google Scholar] [CrossRef]
- Ri, K.J.; Ri, C.H. Tunable dual-broadband terahertz metamaterial absorber based on a simple design of slotted VO2 resonator. Opt. Commun. 2023, 536, 129377. [Google Scholar] [CrossRef]
- Singh, R.; Al-Naib, I.A.; Koch, M.; Zhang, M. Sharp Fano resonances in THz metamaterials. Opt. Express. 2011, 19, 6312–6319. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Mangini, M.; Penzo, E.; Cabrini, S.; De Luca, A.C.; Rendina, I.; Zito, G. Ultrasensitive surface refractive index imaging based on quasi-bound states in the continuum. ACS Nano 2020, 14, 15417–15427. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Z.; Li, C.; Wang, D.; Gao, S.; Chen, W.Y.; Guo, S.J.; Xiong, J.R. Vanadium dioxide-based ultra-broadband metamaterial absorber for terahertz waves. Opt. Mater. 2024, 147, 114667. [Google Scholar] [CrossRef]
- Zheng, R.Y.; Liu, Y.H.; Ling, L.; Sheng, Z.X.; Yi, Z.; Song, Q.J.; Tang, B.; Zeng, Q.D.; Chen, J.; Sun, T.Y. Ultra wideband tunable terahertz metamaterial absorber based on single-layer graphene strip. Diam. Relat. Mater. 2024, 141, 110713. [Google Scholar] [CrossRef]
- Jing, H.H.; Kang, J.F.; Song, C.W.; Duan, J.P.; Qu, Z.; Wang, J.Y.; Zhang, B.Z. Bifunctional switchable terahertz metamaterial in the same operating band based on VO2. Opt. Commun. 2024, 552, 130047. [Google Scholar] [CrossRef]
- Li, J.T.; Li, J.; Zheng, C.; Yue, Z.; Wang, S.; Li, M.; Yao, J. Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces. Carbon 2021, 182, 506–515. [Google Scholar] [CrossRef]
- Gao, C.J.; Zhang, H.F. Switchable metasurface with electromagnetically induced transparency and absorption simultaneously realizing circular polarization-insensitive circular-to-linear polarization conversion. Ann. Phys. 2022, 534, 2200108. [Google Scholar] [CrossRef]
- Li, W.; Qu, Z.; Duan, J.P.; Wang, J.Y.; Kang, J.F.; Yao, B.Y.; Zhang, B.Z. Switchable dual-function metasurfaces with electromagnetic induction transparency-like and absorption. Optik 2023, 272, 170343. [Google Scholar] [CrossRef]
- Li, D.Z.; He, S.; Su, L.; Du, H.T.; Tian, Y.; Gao, Z.Q.; Xie, B.; Huang, G.Q. Switchable and tunable terahertz metamaterial absorber based on graphene and vanadium dioxide. Opt. Mater. 2024, 147, 114655. [Google Scholar] [CrossRef]
- Wang, X.W.; Xiao, Z.Y.; Zheng, Q. Switchable and tunable broadband terahertz absorption, linear polarization conversion and linear to circular polarization based on graphene–vanadium dioxide metamaterials. Opt. Mater. 2024, 150, 115238. [Google Scholar] [CrossRef]
- Xiong, T.H.; Zhao, K.; Li, W.; Peng, Y.X.; He, M.D.; Wang, K.J.; Zhang, X.M.; Li, J.B.; Liu, J.Q. Tunable multiband metamaterial coherent perfect absorber based on graphene and vanadium dioxide. Opt. Commun. 2022, 523, 128691. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, Z.; Chen, Z. Conversion and Active Control between BIC and Absorber in Terahertz Metasurface. Photonics 2024, 11, 437. https://doi.org/10.3390/photonics11050437
Xi Z, Chen Z. Conversion and Active Control between BIC and Absorber in Terahertz Metasurface. Photonics. 2024; 11(5):437. https://doi.org/10.3390/photonics11050437
Chicago/Turabian StyleXi, Zhou, and Zhencheng Chen. 2024. "Conversion and Active Control between BIC and Absorber in Terahertz Metasurface" Photonics 11, no. 5: 437. https://doi.org/10.3390/photonics11050437
APA StyleXi, Z., & Chen, Z. (2024). Conversion and Active Control between BIC and Absorber in Terahertz Metasurface. Photonics, 11(5), 437. https://doi.org/10.3390/photonics11050437