# Dissipation-Induced Photon Blockade in the Anti-Jaynes–Cummings Model

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Model and Theoretical Analysis

## 3. Quantum Statistical Properties in the Model

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

## Appendix B

## References

- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dusek, M.; Lutkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys.
**2009**, 81, 1301. [Google Scholar] [CrossRef] - Knill, E.; Laflamme, R.; Milburn, G.J. A scheme for efficient quantum computation with linear optics. Nature
**2001**, 409, 46. [Google Scholar] [CrossRef] [PubMed] - Kok, P.; Munro, W.J.; Nemoto, K.; Ralph, T.C.; Dowling, J.P.; Milburn, G.J. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys.
**2007**, 79, 135. [Google Scholar] [CrossRef] - Ladd, T.D.; Jelezko, F.; Laflamme, R.; Nakamura, Y.; Monroe, C.; O’Brien, J.L. Quantum computers. Nature
**2010**, 464, 45. [Google Scholar] [CrossRef] [PubMed] - Yao, P.; Rao, V.S.C.M.; Hughes, S. On chip single photon sources using planar photonic crystals and single quantum dots. Laser Photon. Rev.
**2009**, 4, 499. [Google Scholar] [CrossRef] - Pironio, S.; Acín, A.; Brunner, N.; Gisin, N.; Massar, S.; Scarani, V. Device-independent quantum key distribution secure against collective attacks. New J. Phys.
**2009**, 11, 045021. [Google Scholar] [CrossRef] - Gisin, N.; Thew, R. Quantum communication. Nat. Photonics
**2007**, 1, 165–171. [Google Scholar] [CrossRef] - Pezze, L.; Smerzi, A. Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. Phys. Rev. Lett.
**2008**, 100, 073601. [Google Scholar] [CrossRef] [PubMed] - Bennerr, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett.
**1993**, 70, 1895. [Google Scholar] - Ding, X.; He, Y.; Duan, Z.-C.; Gregersen, N.; Chen, M.-C.; Unsleber, S.; Maier, S.; Schneider, C.; Kamp, M.; Hofling, S.; et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett.
**2016**, 116, 020401. [Google Scholar] [CrossRef] [PubMed] - Qi, R.; Yu, X.-L.; Li, Z.B.; Liu, W.M. Non-Abelian Josephson Effect between Two F = 2 Spinor Bose-Einstein Condensates in Double Optical Traps. Phys. Rev. Lett.
**2009**, 102, 185301. [Google Scholar] [CrossRef] [PubMed] - Ji, A.-C.; Sun, Q.; Xie, X.C.; Liu, W.M. Josephson Effect for Photons in Two Weakly Linked Microcavities. Phys. Rev. Lett.
**2009**, 102, 023602. [Google Scholar] [CrossRef] [PubMed] - Ji, A.-C.; Xie, X.C.; Liu, W.M. Quantum Magnetic Dynamics of Polarized Light in Arrays of Microcavities. Phys. Rev. Lett.
**2007**, 99, 183602. [Google Scholar] [CrossRef] [PubMed] - Carusotto, I.; Ciuti, C. Quantum fluids of light. Rev. Mod. Phys.
**2013**, 85, 299. [Google Scholar] [CrossRef] - Carmichael, H.J. Photon antibunching and squeezing for a single atom in a resonant cavity. Phys. Rev. Lett.
**1985**, 55, 2790. [Google Scholar] [CrossRef] [PubMed] - Faraon, A.; Fushman, I.; Englund, D.; Stoltz, N.; Petroff, P.; Vuckovic, J. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys.
**2008**, 4, 859. [Google Scholar] [CrossRef] - Tang, J.; Geng, W.D.; Xu, X.L. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. Sci. Rep.
**2015**, 5, 9252. [Google Scholar] [CrossRef] [PubMed] - Majumdar, A.; Bajcsy, M.; Rundquist, A.; Vuvckovic, J. Loss-enabled sub-Poissonian light generation in a bimodal nanocavity. Phys. Rev. Lett.
**2012**, 108, 183601. [Google Scholar] [CrossRef] [PubMed] - Verger, A.; Ciuti, C.; Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B
**2006**, 73, 193306. [Google Scholar] [CrossRef] - Majumdar, A.; Gerace, D. Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity. Phys. Rev. B
**2013**, 87, 235319. [Google Scholar] [CrossRef] - Ferretti, S.; Gerace, D. Single-photon nonlinear optics with Kerr-type nanostructured materials. Phys. Rev. B
**2012**, 85, 033303. [Google Scholar] [CrossRef] - Imamoglu, A.; Schmidt, H.; Woods, G.; Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett.
**1997**, 79, 1467. [Google Scholar] [CrossRef] - Hoffman, A.J.; Srinivasan, S.J.; Schmidt, S.; Spietz, L.; Aumentado, J.; Tureci, H.E.; Houck, A.A. Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett.
**2011**, 107, 053602. [Google Scholar] [CrossRef] [PubMed] - Liu, Y.X.; Xu, X.W.; Miranowicz, A.; Nori, F. From blockade to transparency: Controllable photon transmission through a circuit-QED system. Phys. Rev. A
**2014**, 89, 043818. [Google Scholar] [CrossRef] - Miranowicz, A.; Bajer, J.; Paprzycka, M.; Liu, Y.X.; Zagoskin, A.M.; Nori, F. State-dependent photon blockade via quantum-reservoir engineering. Phys. Rev. A
**2014**, 90, 033831. [Google Scholar] [CrossRef] - Xu, X.W.; Li, Y.J.; Liu, Y.X. Photon-induced tunneling in optomechanical systems. Phys. Rev. A
**2013**, 87, 025803. [Google Scholar] [CrossRef] - Rabl, P. Photon blockade effect in optomechanical systems. Phys. Rev. Lett.
**2011**, 107, 063601. [Google Scholar] [CrossRef] [PubMed] - Liao, J.Q.; Nori, F. Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A
**2013**, 88, 023853. [Google Scholar] [CrossRef] - Bamba, M.; Imamoglu, A.; Carusotto, I.; Ciuti, C. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A
**2011**, 83, 021802. [Google Scholar] [CrossRef] - Flayac, H.; Savona, V. Unconventional photon blockade. Phys. Rev. A.
**2017**, 96, 053810. [Google Scholar] [CrossRef] - Zhang, W.; Yu, Z.Y.; Liu, Y.M.; Peng, Y.W. Optimal photon antibunching in a quantum-dotCbimodal-cavity system. Phys. Rev. A
**2014**, 89, 043832. [Google Scholar] [CrossRef] - Liang, X.Y.; Duan, Z.L.; Guo, Q.; Liu, C.J.; Guan, S.G.; Ren, Y. Antibunching effect of photons in a two-level emitter-cavity system. Phys. Rev. A
**2019**, 100, 063834. [Google Scholar] [CrossRef] - Zhou, Y.H.; Shen, H.Z.; Yi, X.X. Unconventional photon blockade with second-order nonlinearity. Phys. Rev. A
**2015**, 92, 023838. [Google Scholar] [CrossRef] - Sarma, B.; Sarma, A.K. Quantum-interference-assisted photon blockade in a cavity via parametric interactions. Phys. Rev. A
**2017**, 96, 053827. [Google Scholar] [CrossRef] - Birnbaum, K.M.; Boca, A.; Miller, R.; Boozer, A.D.; Northup, T.E.; Kimble, H.J. Photon blockade in an optical cavity with one trapped atom. Nature
**2005**, 436, 87. [Google Scholar] [CrossRef] [PubMed] - Reinhard, A.; Volz, T.; Winger, M.; Badolato, A.; Hennessy, K.J.; Hu, E.L.; Imamoglu, A. Strongly correlated photons on a chip. Nat. Photonics
**2012**, 6, 93–96. [Google Scholar] [CrossRef] - Volz, T.; Reinhard, A.; Winger, M.; Badolato, A.; Hennessy, K.J.; Hu, E.L.; Imamoglu, A. Ultrafast all-optical switching by single photons. Nat. Photonics
**2012**, 6, 605–609. [Google Scholar] [CrossRef] - Snijders, H.J.; Frey, J.A.; Norman, J.; Flayac, H.; Savona, V.; Gossard, A.C.; Bowers, J.E.; van Exter, M.P.; Bouwmeester, D.; Lofler, W. Observation of the unconventional photon blockade. Phys. Rev. Lett.
**2018**, 121, 043601. [Google Scholar] [CrossRef] [PubMed] - Vaneph, C.; Morvan, A.; Aiello, G.; Fechant, M.; Aprili, M.; Gabelli, J.; Esteve, J. Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett.
**2018**, 121, 043602. [Google Scholar] [CrossRef] - Zhang, H.L.; Duan, Z.-L. Photon blockade in the Jaynes-Cummings model with two-photon dissipation. Opt. Express
**2023**, 31, 22580–22593. [Google Scholar] [CrossRef] [PubMed] - Su, X.; Tang, J.-S.; Xia, K.Y. Nonlinear dissipation-induced photon blockade. Phys. Rev. A
**2022**, 106, 063707. [Google Scholar] [CrossRef] - Huang, Y.-C.; Kumar, P. Antibunched emission of photon pairs via quantum zeno blockade. Phys. Rev. Lett.
**2012**, 108, 030502. [Google Scholar] [CrossRef] [PubMed] - Sun, Y.-Z.; Huang, Y.-P.; Kumar, P. Photonic nonlinearities via quantum zeno blockade. Phys. Rev. Lett.
**2013**, 110, 223901. [Google Scholar] [CrossRef] [PubMed] - Qiang, W.-C.; Sun, G.-H.; Dong, Q.; Camacho-Nieto, O.; Dong, S.-H. Concurrence of three JaynesCCummings systems. Quantum Inf. Process
**2018**, 17, 90. [Google Scholar] [CrossRef] - Jaynes, E.T.; Cummings, F.W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE
**1963**, 51, 89. [Google Scholar] [CrossRef] - Del Valle, E.; Laussy, F.P.; Tejedor, C. Luminescence spectra of quantum dots in microcavities. II. Fermions. Phys. Rev. B
**2009**, 79, 235326. [Google Scholar] [CrossRef] - Huang, J.-F.; Liao, J.-Q.; Tian, L.; Kuang, L.-M. Manipulating counter-rotating interactions in the quantum Rabi model via modulation of the transition frequency of the two-level system. Phys. Rev. A
**2017**, 96, 043849. [Google Scholar] [CrossRef] - Dodonov, A.V. Photon creation from vacuum and interactions engineering in nonstationary circuit QED. J. Phys. Conf. Ser.
**2009**, 161, 012029. [Google Scholar] [CrossRef] - Liberato, S.D.; Gerace, D.; Carusotto, I.; Ciuti, C. Extracavity quantum vacuum radiation from a single qubit. Phys. Rev. A
**2009**, 80, 053810. [Google Scholar] [CrossRef] - Werlang, T.; Dodonov, A.V.; Duzzioni, E.I.; Villas-Boas, C.J. Rabi model beyond the rotating-wave approximation: Generation of photons from vacuum through decoherence. Phys. Rev. A
**2008**, 78, 053805. [Google Scholar] [CrossRef] - Mayero, C. Photon statistics and quantum field entropy in the anti-jaynes-cummings model: A comparison with the jaynes-cummings interaction. Quantum Inf. Process.
**2023**, 22, 182. [Google Scholar] [CrossRef] - Xue, F.; Zhong, L.; Li, Y.; Sun, C.P. Analogue of cavity quantum electrodynamics for coupling between spin and a nanomechanical resonator: Dynamic squeezing and coherent manipulations. Phys. Rev. B
**2007**, 75, 033407. [Google Scholar] [CrossRef] - Felicetti, S.; Sabin, C.; Fuentes, I.; Lamata, L.; Romero, G.; Solano, E. Relativistic motion with superconducting qubits. Phys. Rev. B
**2015**, 92, 064501. [Google Scholar] [CrossRef] - Tian, L. Circuit QED and sudden phase switching in a superconducting qubit array. Phys. Rev. Lett.
**2010**, 105, 167001. [Google Scholar] [CrossRef] [PubMed] - Yin, Y.; Chen, Y.; Sank, D.; O’Malley, P.J.J.; White, T.C.; Barends, R.; Kelly, J.; Lucero, E.; Mariantoni, M.; Megrant, A.; et al. Catch and release of microwave photon states. Phys. Rev. Lett.
**2013**, 110, 107001. [Google Scholar] [CrossRef] [PubMed] - Zou, X.T.; Mandel, L. Photon-antibunching and sub-Poissonian photon statistics. Phys. Rev. A
**1990**, 41, 475. [Google Scholar] [CrossRef] [PubMed] - Veloso, D.S.; Dodonov, A.V. Prospects for observing dynamical and anti-dynamical Casimir effects in circuit QED due to fast modulation of qubit parameters. J. Phys. B
**2015**, 48, 165503. [Google Scholar] [CrossRef] - Dodonov, A.V.; Valente, D.; Werlang, T. Antidynamical Casimir effect as a resource for work extraction. Phys. Rev. A
**2017**, 96, 012501. [Google Scholar] [CrossRef] - Gardiner, C.; Zoller, P. Quantum Noise; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]

**Figure 1.**(

**a**) Schematic of a superconducting qubit interacting with the fundamental mode electromagnetic field confined within a transmission line resonator. (

**b**) Energy level structure of the system.

**Figure 2.**(

**a**) Zero-time delay correlation functions ${g}^{\left(k\right)}\left(0\right)(k=2,3,4)$ and (

**b**) average photon number $\u2329N\u232a$ as a function of the resonator detuning $\Delta $. The other parameters are taken as $g=0.02\kappa $, $\gamma =0.01\kappa $ and $\kappa =1$. The solid lines represent the numerical results, and the symbols “o” denote the analytical results [based on Equations (8) and (9)]. The inset is the zero-time-delay second-order correlation function ${g}^{\left(2\right)}\left(0\right)$. The time-dependent second correlation function with the resonator detunings (

**c**) $\Delta =0$ and (

**d**) $\Delta =10\kappa $.

**Figure 3.**(

**a**) Zero-time delay second-order correlation ${g}^{\left(2\right)}\left(0\right)$ and (

**b**) average photon number $\langle N\rangle $ as a function of the coupling strength g. I, II and III denote the different regions of zero-time delay second-order correlation. The other parameters are: $\Delta =0$, $\gamma =0.01\kappa $ and $\kappa =1$.

**Figure 4.**(

**a**) Zero-time delay second-order correlation ${g}^{\left(2\right)}\left(0\right)$ and (

**b**) average photon number $\u2329N\u232a$ as a function of the spontaneous decay rate of the superconducting qubit $\gamma $ for $g=0.01\kappa $, $0.05\kappa $ and $0.1\kappa $. The other parameters are set to $\Delta =0$ and $\kappa =1$.

**Figure 5.**(

**a**) Zero-time delay second-order correlation function and (

**b**) average photon number as a function of the cavity decay rate $\kappa $ at different coupling strengths $g=0.01\gamma $, $\gamma $ and $10\gamma $. The other parameters are $\Delta =0$ and $\gamma =1$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Huang, B.; Li, C.; Fan, B.; Duan, Z.
Dissipation-Induced Photon Blockade in the Anti-Jaynes–Cummings Model. *Photonics* **2024**, *11*, 369.
https://doi.org/10.3390/photonics11040369

**AMA Style**

Huang B, Li C, Fan B, Duan Z.
Dissipation-Induced Photon Blockade in the Anti-Jaynes–Cummings Model. *Photonics*. 2024; 11(4):369.
https://doi.org/10.3390/photonics11040369

**Chicago/Turabian Style**

Huang, Biao, Cuicui Li, Bixuan Fan, and Zhenglu Duan.
2024. "Dissipation-Induced Photon Blockade in the Anti-Jaynes–Cummings Model" *Photonics* 11, no. 4: 369.
https://doi.org/10.3390/photonics11040369