Thermally Controlled Broadband Ge2Sb2Te5-Based Metamaterial Absorber for Imaging Applications
Abstract
1. Introduction
2. Structure Model and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jang, J.; Badloe, T.; Rho, J. Unlocking the future of optical security with metasurfaces. Light Sci. Appl. 2021, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ye, Q.; Ma, C.; Zheng, Z.; Yao, J.; Yang, G. Dielectric Contrast Tailoring for Polarized Photosensitivity toward Multiplexing Optical Communications and Dynamic Encrypt Technology. ACS Nano 2022, 16, 12852–12865. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.; Wang, Y.; Yi, S.; Zhou, Y.; Jia, X. Reversible Data Hiding in Encrypted Images Using Cipher-Feedback Secret Sharing. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4968–4982. [Google Scholar] [CrossRef]
- Liu, S.; Guo, C.; Sheridan, J.T. A review of optical image encryption techniques. Opt. Laser Technol. 2014, 57, 327–342. [Google Scholar] [CrossRef]
- Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D.A.; Bartal, G.; Zhang, X. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008, 455, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yang, W.; Zhang, C.; Jing, J.; Gao, Y.; Yu, X.; Song, Q.; Xiao, S. Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces. ACS Nano 2018, 12, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Qin, F.; Yi, Z.; Yao, W.; Liu, Z.; Wu, X.; Wu, P. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. Phys. 2021, 23, 17041–17048. [Google Scholar] [CrossRef]
- Chen, J.; Qi, H.; Liu, R.; Tang, B. Switchable large-angle beam splitter based on a continuous metasurface in the near-infrared region. Opt. Commun. 2024, 559, 130397. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef]
- Cui, Y.; He, Y.; Jin, Y.; Ding, F.; Yang, L.; Ye, Y.; Zhong, S.; Lin, Y.; He, S. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 2014, 8, 495–520. [Google Scholar] [CrossRef]
- Li, W.; Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 2014, 14, 3510–3514. [Google Scholar] [CrossRef] [PubMed]
- Padilla, W.J.; Averitt, R.D. Imaging with metamaterials. Nat. Rev. Phys. 2022, 4, 85–100. [Google Scholar] [CrossRef]
- Wang, X.; Sang, T.; Li, G.; Mi, Q.; Pei, Y.; Wang, Y. Ultrabroadband and ultrathin absorber based on an encapsulated T-shaped metasurface. Opt. Express 2021, 29, 31311–31323. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Zhang, H.; Tang, P.; Wu, B.; Liu, G. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt. Express 2019, 27, 11809–11818. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Li, Z.; Palacios, E.; Liu, Z.; Butun, S.; Aydin, K. Chiral-Selective Plasmonic Metasurface Absorbers Operating at Visible Frequencies. IEEE Photonics Technol. Lett. 2017, 29, 295–298. [Google Scholar] [CrossRef]
- Liang, Y.; Koshelev, K.; Zhang, F.; Lin, H.; Lin, S.; Wu, J.; Jia, B.; Kivshar, Y. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 2020, 20, 6351–6356. [Google Scholar] [CrossRef]
- Cao, T.; Wei, C.-w.; Simpson, R.E.; Zhang, L.; Cryan, M.J. Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies. Sci. Rep. 2014, 4, 3955. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, T.; Jiang, C.; Tang, B. Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials. Opt. Express 2021, 29, 7666–7679. [Google Scholar] [CrossRef]
- Tang, B.; Ren, Y. Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide–graphene integrated configuration. Phys. Chem. Chem. Phys. 2022, 24, 8408–8414. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, T.; Jin, G.; Su, J.; Tang, B. Switchable asymmetric transmission with broadband polarization conversion in vanadium dioxide-assisted terahertz metamaterials. Phys. Chem. Chem. Phys. 2024, 26, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.; Li, X.; Yang, T.; Sun, L.; Kosareva, O.; Gong, C.; Liu, W. Graphene-Based Absorption–Transmission Multi-Functional Tunable THz Metamaterials. Micromachines 2022, 13, 1239. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Sultana, J.; Biabanifard, M.; Vafapour, Z.; Nine, M.; Dinovitser, A.; Cordeiro, C.; Ng, B.-H.; Abbott, D. Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 2020, 158, 559–567. [Google Scholar] [CrossRef]
- Huidobro, P.A.; Kraft, M.; Maier, S.A.; Pendry, J.B. Graphene as a tunable anisotropic or isotropic plasmonic metasurface. ACS Nano 2016, 10, 5499–5506. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Chen, R. Tunable broadband terahertz absorber based on a single-layer graphene metasurface. Opt. Express 2020, 28, 30289–30298. [Google Scholar] [CrossRef] [PubMed]
- Shrekenhamer, D.; Chen, W.-C.; Padilla, W.J. Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett. 2013, 110, 177403. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Hu, H.; Mo, H.; Yin, Z.; Lu, H.; Hu, M.; Li, J.; Yang, J. Liquid crystal-based wide-angle metasurface absorber with large frequency tunability and low voltage. Opt. Express 2022, 30, 22550–22561. [Google Scholar] [CrossRef]
- Jin, R.; Huang, L.; Zhou, C.; Guo, J.; Fu, Z.; Chen, J.; Wang, J.; Li, X.; Yu, F.; Chen, J.; et al. Toroidal Dipole BIC-Driven Highly Robust Perfect Absorption with a Graphene-Loaded Metasurface. Nano Lett. 2023, 23, 9105–9113. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Luo, Y.; Yi, Z.; Zhang, J.; Liu, L.; Song, Q.; Wu, P.; Yu, Y.; Zhang, J. Terahertz perfect absorber based on flexible active switching of ultra-broadband and ultra-narrowband. Opt. Express 2021, 29, 42787–42799. [Google Scholar] [CrossRef]
- Qi, H.; Tang, B. An active tunable terahertz functional metamaterial based on hybrid-graphene vanadium dioxide. Phys. Chem. Chem. Phys 2023, 25, 7825–7831. [Google Scholar] [CrossRef]
- Gholipour, B.; Zhang, J.; MacDonald, K.F.; Hewak, D.W.; Zheludev, N.I. An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch. Adv. Mater. 2013, 25, 3050–3054. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, R.; Fan, Y.; Fu, Q.; Wu, H.; Zhang, P.; Shen, N.-H.; Zhang, F. Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials. Nanoscale 2018, 10, 12054–12061. [Google Scholar] [CrossRef]
- Li, S.; Sang, T.; Yang, C.; Lu, J.; Wang, Y. Phase-change metasurfaces for dynamic control of chiral quasi-bound states in the continuum. Opt. Lett. 2023, 48, 6488–6491. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Sang, T.; Li, S.; Luo, C.; Wang, Y. Active control of resonant asymmetric transmission based on topological edge states in paired photonic crystals with a Ge2Sb2Te5 film. Appl. Opt. 2023, 62, 5969–5975. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Li, Z.-Y. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photonics Res. 2016, 4, 146–152. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, K.; Jiang, H.; Li, W.; Zhao, W. Multifunctional metasurfaces for switchable polarization selectivity and absorption. Opt. Express 2022, 30, 20554–20563. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, K.V.; Han, S.; Singh, R. Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies. Adv. Mater. 2018, 30, 1706696. [Google Scholar] [CrossRef]
- Gao, P.; Chen, C.; Dai, Y.; Wang, X.; Liu, H. Reconfigurable chiral metasurface based on vanadium dioxide: Modulation of phase and intensity for high-quality hologram and near-field imaging. Opt. Mater. 2023, 145, 114448. [Google Scholar] [CrossRef]
- Xiong, T.-H.; Li, W.; Yi, Q.-Y.; Su, P.-H.; Peng, Y.-X.; Liu, Y.-Y.; Wang, K.-J.; Zhang, X.-M.; Li, J.-B.; Liu, J.-Q.; et al. A temperature-tunable chirality-selective meta-absorber for electromagnetic encrypted imaging. Appl. Phys. Lett 2023, 123, 091701. [Google Scholar] [CrossRef]
- Chen, L.; Sun, L.; Dong, H.; Mou, N.; Zhang, Y.; Li, Q.; Jiang, X.; Zhang, L. Near-field imaging of the multi-resonant mode induced broadband tunable metamaterial absorber. RSC Adv. 2020, 10, 5146–5151. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, K.; Cui, Y.; Xie, Z.; Zhang, H.; Jiang, Y.; Zhao, W.; Yuan, X. Giant and reversible circular dichroism based on phase change materials for near-field image display. J. Opt. 2023, 25, 065101. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; Volume 3. [Google Scholar]
- Lee, B.-S.; Bishop, S.G. Optical and Electrical Properties of Phase Change Materials. In Phase Change Materials; Springer: Boston, MA, USA, 2009; pp. 175–198. [Google Scholar]
- Cao, T.; Liu, K.; Lu, L.; Chui, H.-C.; Simpson, R.E. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 5176–5182. [Google Scholar] [CrossRef] [PubMed]
- Barzegar-Parizi, S.; Vafapour, Z. A switchable polarization-independent broadband GST-based metasurface infrared absorber in modulating applications. Appl. Phys. A Mater. Sci. Process. 2023, 129, 790. [Google Scholar] [CrossRef]
- Jahani, S.; Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 2016, 11, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Kao, T.-S.; Ng, B.; Li, X.; Luo, X.; Luk’Yanchuk, B.; Maier, S.; Hong, M. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express 2013, 21, 13691–13698. [Google Scholar] [CrossRef]
- Schreiber, W.F. Fundamentals of Electronic Imaging Systems: Some Aspects of Image Processing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 15. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Z.; Jin, G.; Tang, B. Thermally Controlled Broadband Ge2Sb2Te5-Based Metamaterial Absorber for Imaging Applications. Photonics 2024, 11, 272. https://doi.org/10.3390/photonics11030272
Qiu Z, Jin G, Tang B. Thermally Controlled Broadband Ge2Sb2Te5-Based Metamaterial Absorber for Imaging Applications. Photonics. 2024; 11(3):272. https://doi.org/10.3390/photonics11030272
Chicago/Turabian StyleQiu, Zifeng, Gui Jin, and Bin Tang. 2024. "Thermally Controlled Broadband Ge2Sb2Te5-Based Metamaterial Absorber for Imaging Applications" Photonics 11, no. 3: 272. https://doi.org/10.3390/photonics11030272
APA StyleQiu, Z., Jin, G., & Tang, B. (2024). Thermally Controlled Broadband Ge2Sb2Te5-Based Metamaterial Absorber for Imaging Applications. Photonics, 11(3), 272. https://doi.org/10.3390/photonics11030272