Comparison between Different Optical Configurations of Active-FRAME Setup in Multispectral Imaging of Flames
Abstract
:1. Introduction
2. Frequency Recognition Algorithm for Multiple Exposures (FRAME)
- First, two signals of intensities I1 and I2 are generated by multiplying () with two reference signals (—a sine wave of spatial frequency ) and (a sine wave of spatial frequency , but phase shifted by 90° to ). This step leads to the zero and first orders switching their places. Here, the reference signal () matrices can be constructed as:
- After the first order and zero order switch places, a low pass filter (filter size σ = 0.15, rotational symmetric Gaussian filter) is applied on and that corresponds to components only. After the filtering process, the resulting intensities can be expressed in a one-dimensional space as follows:
- The next stage involves calculating the inverse Fourier transform of that is our isolated image of soot-LII.
- Similar to the previous three steps, now LIF signal can now be extracted after applying the post-processing algorithm to extract the components.
- Furthermore, it is possible to apply the low-pass Fourier filter on the zero-order component, extracting the non-modulated signal of the FFT which will give the output of the conventional image (LIF and LII merged together).
3. Four Different Optical Configurations
4. Results
4.1. Comparison of Laser Fluence for Modulated and Non-Modulated Laser Sheet
4.2. Simultaneous PAH-LIF and Soot-LII Images
4.3. Single-Species Images of PAH-LIF Recorded Using FRAME
4.4. Single-Species Images of Soot-LII Recorded Using FRAME
5. Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dyer, M.J.; Crosley, D.R. Two-Dimensional Imaging of OH Laser-Induced Fluorescence in a Flame. Opt. Lett. 1982, 7, 382. [Google Scholar] [CrossRef]
- Miles, R.; Lempert, W. Two-Dimensional Measurement of Density, Velocity, and Temperature in Turbulent High-Speed Air Flows by UV Rayleigh Scattering. Appl. Phys. B Photophysics Laser Chem. 1990, 51, 1–7. [Google Scholar] [CrossRef]
- Frank, J.H.; Kaiser, S.A.; Long, M.B. Reaction-Rate, Mixture-Fraction, and Temperature Imaging in Turbulent Methane/Air Jet Flames. Proc. Combust. Inst. 2002, 29, 2687–2694. [Google Scholar] [CrossRef]
- Brackmann, C.; Nygren, J.; Bai, X.; Li, Z.; Bladh, H.; Axelsson, B.; Denbratt, I.; Koopmans, L.; Bengtsson, P.E.; Aldén, M. Laser-Induced Fluorescence of Formaldehyde in Combustion Using Third Harmonic Nd:YAG Laser Excitation. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2003, 59, 3347–3356. [Google Scholar] [CrossRef]
- Schulz, C.; Kock, B.F.; Hofmann, M.; Michelsen, H.; Will, S.; Bougie, B.; Suntz, R.; Smallwood, G. Laser-Induced Incandescence: Recent Trends and Current Questions. Appl. Phys. B Lasers Opt. 2006, 83, 333–354. [Google Scholar] [CrossRef]
- Tian, B.; Fan, L.; Chong, C.T.; Gao, Z.; Ng, J.H.; Ni, S.; Zhu, L.; Hochgreb, S. Soot Volume Fraction and Size Measurements over Laminar Pool Flames and Pre-Vaporised Non-Premixed Flames of Biofuels, Methyl esters and Blends with Diesel. Exp. Therm. Fluid Sci. 2023, 141, 110794. [Google Scholar] [CrossRef]
- Kiefer, J.; Li, Z.S.; Zetterberg, J.; Bai, X.S.; Aldén, M. Investigation of Local Flame Structures and Statistics in Partially Premixed Turbulent Jet Flames Using Simultaneous Single-Shot CH and OH Planar Laser-Induced Fluorescence Imaging. Combust. Flame 2008, 154, 802–818. [Google Scholar] [CrossRef]
- Li, Z.S.; Li, B.; Sun, Z.W.; Bai, X.S.; Aldén, M. Turbulence and Combustion Interaction: High Resolution Local Flame Front Structure Visualization Using Simultaneous Single-Shot PLIF Imaging of CH, OH, and CH2O in a Piloted Premixed Jet Flame. Combust. Flame 2010, 157, 1087–1096. [Google Scholar] [CrossRef]
- Röder, M.; Dreier, T.; Schulz, C. Simultaneous Measurement of Localized Heat-Release with OH/CH2O–LIF Imaging and Spatially Integrated OH* Chemiluminescence in Turbulent Swirl Flames. Proc. Combust. Inst. 2013, 34, 3549–3556. [Google Scholar] [CrossRef]
- Sjoholm, J.; Rosell, J.; Li, B.; Richter, M.; Li, Z.; Bai, X.S.; Alden, M. Simultaneous Visualization of OH, CH, CH2O and Toluene PLIF in a Methane Jet Flame with Varying Degrees of Turbulence. Proc. Combust. Inst. 2013, 34, 1475–1482. [Google Scholar] [CrossRef]
- Tanahashi, M.; Murakami, S.; Choi, G.M.; Fukuchi, Y.; Miyauchi, T. Simultaneous CH-OH PLIF and Stereoscopic PIV Measurements of Turbulent Premixed Flames. Proc. Combust. Inst. 2005, 30, 1665–1672. [Google Scholar] [CrossRef]
- Wang, G.; Shi, H.; Roberts, W.L.; Guiberti, T.F. Simultaneous Imaging of NO and NH in an Ammonia-Hydrogen-Nitrogen Flame Using a Single Dye Laser. Combust. Flame 2022, 245, 112355. [Google Scholar] [CrossRef]
- Böckle, S.; Kazenwadel, J.; Kunzelmann, T.; Shin, D.I.; Schulz, C.; Wolfrum, J. Simultaneous Single-Shot Laser-Based Imaging of Formaldehyde, OH, and Temperature in Turbulent Flames. Proc. Combust. Inst. 2000, 28, 279–286. [Google Scholar] [CrossRef]
- Medwell, P.R.; Kalt, P.A.M.; Dally, B.B. Simultaneous Imaging of OH, Formaldehyde, and Temperature of Turbulent Nonpremixed Jet Flames in a Heated and Diluted Coflow. Combust. Flame 2007, 148, 48–61. [Google Scholar] [CrossRef]
- Zhou, B.; Brackmann, C.; Li, Z.; Aldén, M.; Bai, X.S. Simultaneous Multi-Species and Temperature Visualization of Premixed Flames in the Distributed Reaction Zone Regime. Proc. Combust. Inst. 2015, 35, 1409–1416. [Google Scholar] [CrossRef]
- Li, Z.; Borggren, J.; Berrocal, E.; Ehn, A.; Aldén, M.; Richter, M.; Kristensson, E. Simultaneous Multispectral Imaging of Flame Species Using Frequency Recognition Algorithm for Multiple Exposures (FRAME). Combust. Flame 2018, 192, 160–169. [Google Scholar] [CrossRef]
- Fassel, V.A.; Katzenberger, J.M.; Winge, R.K. Effectiveness of Interference Filters for Reduction of Stray Light Effects in Atomic Emission Spectrometry. Appl. Spectrosc. 1979, 33, 1–5. [Google Scholar] [CrossRef]
- Mishra, Y.N. Droplet Size, Concentration, and Temperature Mapping in Sprays Using SLIPI-Based Techniques. Ph.D. Thesis, Lund University, Lund, Sweden, 2018. [Google Scholar]
- Berrocal, E.; Kristensson, E.; Richter, M.; Linne, M.; Aldén, M. Application of Structured Illumination for Multiple Scattering Suppression in Planar Laser Imaging of Dense Sprays. Opt. Express 2008, 16, 17870. [Google Scholar] [CrossRef] [PubMed]
- Ek, S.; Kornienko, V.; Kristensson, E. Long Sequence Single-Exposure Videography Using Spatially Modulated Illumination. Sci. Rep. 2020, 10, 18920. [Google Scholar] [CrossRef]
- Kristensson, E.; Li, Z.; Berrocal, E.; Richter, M.; Aldén, M. Instantaneous 3D Imaging of Flame Species Using Coded Laser Illumination. Proc. Combust. Inst. 2017, 36, 4585–4591. [Google Scholar] [CrossRef]
- Aldén, M. Spatially and Temporally Resolved Laser/Optical Diagnostics of Combustion Processes: From Fundamentals to Practical Applications. Proc. Combust. Inst. 2023, 39, 1185–1228. [Google Scholar] [CrossRef]
- Mishra, Y.N.; Boggavarapu, P.; Chorey, D.; Zigan, L.; Will, S.; Deshmukh, D.; Rayavarapu, R. Application of Frame for Simultaneous Lif and Lii Imaging in Sooting Flames Using a Single Camera. Sensors 2020, 20, 5534. [Google Scholar] [CrossRef]
- Dorozynska, K.; Kristensson, E. Implementation of a Multiplexed Structured Illumination Method to Achieve Snapshot Multispectral Imaging. Opt. Express 2017, 25, 5602–5608. [Google Scholar] [CrossRef] [PubMed]
- Chorey, D.; Jagdale, V.; Prakash, M.; Hanstorp, D.; Andersson, M.; Deshmukh, D.; Mishra, Y.N. Simultaneous Imaging of CH*, C2*, and Temperature in Flames Using a DSLR Camera and Structured Illumination. Appl. Opt. 2023, 62, 3737–3746. [Google Scholar] [CrossRef]
- Mishra, Y.N.; Tscharntke, T.; Kristensson, E.; Berrocal, E. Application of SLIPI-Based Techniques for Droplet Size, Concentration, and Liquid Volume Fraction Mapping in Sprays. Appl. Sci. 2020, 10, 1369. [Google Scholar] [CrossRef]
- Chorey, D.; Koegl, M.; Boggavarapu, P.; Bauer, F.J.; Zigan, L.; Will, S.; Ravikrishna, R.V.; Deshmukh, D.; Mishra, Y.N. 3D Mapping of Polycyclic Aromatic Hydrocarbons, Hydroxyl Radicals, and Soot Volume Fraction in Sooting Flames Using FRAME Technique. Appl. Phys. B 2021, 127, 127–147. [Google Scholar] [CrossRef]
- Ehn, A.; Bood, J.; Li, Z.; Berrocal, E.; Aldén, M.; Kristensson, E. FRAME: Femtosecond Videography for Atomic and Molecular Dynamics. Light Sci. Appl. 2017, 6, e17045. [Google Scholar] [CrossRef]
- Dorozynska, K.; Kornienko, V.; Aldén, M.; Kristensson, E. A Versatile, Low-Cost, Snapshot Multidimensional Imaging Approach Based on Structured Light. Opt. Express 2020, 28, 9572. [Google Scholar] [CrossRef]
- Kornienko, V.; Kristensson, E.; Ehn, A.; Fourriere, A.; Berrocal, E. Beyond MHz Image Recordings Using LEDs and the FRAME Concept. Sci. Rep. 2020, 10, 16650. [Google Scholar] [CrossRef]
- Kristensson, E.; Bood, J.; Alden, M.; Nordström, E.; Zhu, J.; Huldt, S.; Bengtsson, P.-E.; Nilsson, H.; Berrocal, E.; Ehn, A. Stray light Suppression in Spectroscopy Using Periodic Shadowing. Opt. Express 2014, 22, 7711. [Google Scholar] [CrossRef]
- Kristensson, E.; Ehn, A.; Berrocal, E. High Dynamic Spectroscopy Using a Digital Micromirror Device and Periodic Shadowing. Opt. Express 2017, 25, 212. [Google Scholar] [CrossRef]
- Snelling, D.R.; Thomson, K.A.; Smallwood, G.J.; Gülder, Ö.L. Two-Dimensional Imaging of Soot Volume Fraction in Laminar Diffusion Flames. Appl. Opt. 1999, 38, 2478. [Google Scholar] [CrossRef] [PubMed]
- Naccarato, F.; Potenza, M.; De Risi, A. Simultaneous LII and TC Optical Correction of a Low-Sooting LPG Diffusion Flame. Meas. J. Int. Meas. Confed. 2014, 47, 989–1000. [Google Scholar] [CrossRef]
- Cléon, G.; Amodeo, T.; Faccinetto, A.; Desgroux, P. Laser Induced Incandescence Determination of the Ratio of the Soot Absorption Functions at 532 nm and 1064 nm in the Nucleation Zone of a Low Pressure Premixed Sooting Flame. Appl. Phys. B Lasers Opt. 2011, 104, 297–305. [Google Scholar] [CrossRef]
- Michelsen, H.A.; Schulz, C.; Smallwood, G.J.; Will, S. Laser-Induced Incandescence: Particulate Diagnostics for Combustion, Atmospheric, and Industrial Applications. Prog. Energy Combust. Sci. 2015, 51, 2–48. [Google Scholar] [CrossRef]
Configuration Corresponding to Figure 2 | Config. (a) | Config. (b) | Config. (c) | Config. (d) |
---|---|---|---|---|
Angle between light sheets (outer angle) (deg.) | 102 | 139 | 138 | 90 |
Inner angle between light sheets (deg.) | 78 | 41 | 42 | 90 |
FFT Gaussian filter size for LII | 0.15 | 0.22 | 0.16 | 0.16 |
FFT Gaussian filter size for PAH | 0.17 | 0.17 | 0.30 | 0.17 |
No. of mirrors (PAH-LIF; Soot-LII) | 2; 2 | 2; 0 | 0; 2 | 0; 2 |
Path length (PAH-LIF; Soot-LII) (approx. meters) | 1.9; 1.9 | 1.9; 1.2 | 1.2; 1.9 | 1.2; 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chorey, D.; Boggavarapu, P.; Deshmukh, D.; Rayavarapu, R.; Mishra, Y.N. Comparison between Different Optical Configurations of Active-FRAME Setup in Multispectral Imaging of Flames. Photonics 2024, 11, 144. https://doi.org/10.3390/photonics11020144
Chorey D, Boggavarapu P, Deshmukh D, Rayavarapu R, Mishra YN. Comparison between Different Optical Configurations of Active-FRAME Setup in Multispectral Imaging of Flames. Photonics. 2024; 11(2):144. https://doi.org/10.3390/photonics11020144
Chicago/Turabian StyleChorey, Devashish, Prasad Boggavarapu, Devendra Deshmukh, Ravikrishna Rayavarapu, and Yogeshwar Nath Mishra. 2024. "Comparison between Different Optical Configurations of Active-FRAME Setup in Multispectral Imaging of Flames" Photonics 11, no. 2: 144. https://doi.org/10.3390/photonics11020144
APA StyleChorey, D., Boggavarapu, P., Deshmukh, D., Rayavarapu, R., & Mishra, Y. N. (2024). Comparison between Different Optical Configurations of Active-FRAME Setup in Multispectral Imaging of Flames. Photonics, 11(2), 144. https://doi.org/10.3390/photonics11020144