Flexible Construction of a Partially Coherent Optical Array
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gori, F.; Santarsiero, M. Devising genuine spatial correlation functions. Opt. Lett. 2007, 32, 3531–3533. [Google Scholar] [CrossRef]
- Gori, F.; Ramírez-Sánchez, V.; Santarsiero, M.; Shirai, T. On genuine cross-spectral density matrices. J. Opt. A Pure Appl. Opt. 2009, 11, 085706. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Huang, K.; Lu, X. Experimental generation of partially coherent circular Airy beams. Opt. Laser Technol. 2021, 137, 106814. [Google Scholar] [CrossRef]
- Seshadri, S.R. Average characteristics of a partially coherent Bessel—Gauss optical beam. J. Opt. Soc. Am. A 1999, 16, 2917–2927. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Wang, F.; Zhao, C.; Cai, Y. Elliptical Laguerre-Gaussian correlated Schell-model beam. Opt. Express 2014, 22, 13975–13987. [Google Scholar] [CrossRef]
- Wang, F.; Liang, C.; Yuan, Y.; Cai, Y. Generalized multi-Gaussian correlated Schell-model beam: From theory to experiment. Opt. Express 2014, 22, 23456–23464. [Google Scholar] [CrossRef]
- Li, X.; Wei, H.; Visser, T.D.; Cai, Y.; Liu, X. Partially coherent perfect vortex beam generated by an axicon phase. Appl. Phys. Lett. 2021, 119, 171108. [Google Scholar] [CrossRef]
- Dong, M.; Zhao, C.; Cai, Y.; Yang, Y. Partially coherent vortex beams: Fundamentals and applications. Sci. China Phys. Mech. Astron. 2021, 64, 224201. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Z.; Chen, Y.; Cai, Y. Research advances of partially coherent beams with novel coherence structures: Engineering and applications. Opto-Electron. Eng. 2022, 49, 220178. [Google Scholar]
- Yu, J.; Zhu, X.; Lin, S.; Wang, F.; Gbur, G.; Cai, Y. Vector partially coherent beams with prescribed non-uniform correlation structure. Opt. Lett. 2020, 45, 3824–3827. [Google Scholar] [CrossRef]
- Wang, H.; Peng, X.; Zhang, H.; Liu, L.; Chen, Y.; Wang, F.; Cai, Y. Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum. Nanophotonics 2022, 11, 689–696. [Google Scholar] [CrossRef]
- He, Q.; Turunen, J.; Friberg, A.T. Propagation and imaging experiments with Gaussian Schell-model beams. Opt. Commun. 1988, 67, 245–250. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Y.; Yu, J.; Liu, X.; Liu, L. Chapter Three—Generation of Partially Coherent Beams. Prog. Opt. 2017, 62, 157–223. [Google Scholar]
- Zhou, Y.; Cui, Z.; Han, Y. Polarization and coherence properties in self-healing propagation of a partially coherent radially polarized twisted beam. Opt. Express 2022, 30, 23448–23462. [Google Scholar] [CrossRef]
- Ding, C.; Koivurova, M.; Turunen, J.; Pan, L. Self-focusing of a partially coherent beam with circular coherence. J. Opt. Soc. Am. A 2017, 34, 1441–1447. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, J.; Wang, F.; Cai, Y. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam. Phys. Rev. A 2015, 91, 013823. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, Z.; Zhang, M.; Mao, Y. Propagation characteristics of a partially coherent self-shifting beam in random media. Appl. Opt. 2020, 59, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, X.; Cai, Y. Propagation of Partially Coherent Beam in Turbulent Atmosphere: A Review (Invited Review). Prog. Electromagn. Res. 2015, 150, 123–143. [Google Scholar] [CrossRef]
- Huang, X.; Deng, Z.; Shi, X.; Bai, Y.; Fu, X. Average intensity and beam quality of optical coherence lattices in oceanic turbulence with anisotropy. Opt. Express 2018, 26, 4786–4797. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Wang, F.; Cai, Y. Scattering of Partially Coherent Vector Beams by a Deterministic Medium Having Parity-Time Symmetry. Photonics 2022, 9, 140. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Dong, Z.; Peng, D.; Chen, Y.; Wang, F.; Cai, Y. Robust Far-Field Optical Image Transmission with Structured Random Light Beams. Phys. Rev. Appl. 2022, 17, 024043. [Google Scholar] [CrossRef]
- Ricklin, J.C.; Davidson, F.M. Atmospheric optical communication with a Gaussian Schell beam. J. Opt. Soc. Am. A 2003, 20, 856–866. [Google Scholar] [CrossRef]
- Kermisch, D. Partially coherent image processing by laser scanning. J. Opt. Soc. Am. 1975, 65, 887–891. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Wang, F.; Cai, Y.; Liang, C.; Korotkova, O. Robust far-field imaging by spatial coherence engineering. Opto-Electron. Adv. 2021, 4, 210027. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, X.; Ma, D. Potentials of radial partially coherent beams in free-space optical communication: A numerical investigation. Appl. Opt. 2017, 56, 2851–2857. [Google Scholar] [CrossRef]
- Gbur, G.; Visser, T.D. Chapter 5—The Structure of Partially Coherent Fields. Prog. Opt. 2010, 55, 285–341. [Google Scholar]
- Wu, Y.; Mei, H.; Dai, C.; Zhao, F.; Wei, H. Design and analysis of performance of FSO communication system based on partially coherent beams. Opt. Commun. 2020, 472, 126041. [Google Scholar] [CrossRef]
- Forbes, A.; Dudley, A.; McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photon. 2016, 8, 200–227. [Google Scholar] [CrossRef]
- Guo, L.; Feng, Z.; Fu, Y.; Min, C. Generation of vector beams array with a single spatial light modulator. Opt. Commun. 2021, 490, 126915. [Google Scholar] [CrossRef]
- Streibl, N. Beam Shaping with Optical Array Generators. J. Mod. Opt. 1989, 36, 1559–1573. [Google Scholar] [CrossRef]
- Chen, B.; Legant, W.R.; Wang, K.; Shao, L.; Milkie, D.E.; Davidson, M.W.; Janetopoulos, C.; Wu, X.S.; Hammer, J.A.; Liu, Z.; et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 2014, 346, 1257998. [Google Scholar] [CrossRef]
- Schäfer, F.; Fukuhara, T.; Sugawa, S.; Takasu, Y.; Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2020, 2, 411–425. [Google Scholar] [CrossRef]
- Ma, L.; Ponomarenko, S.A. Optical coherence gratings and lattices. Opt. Lett. 2014, 39, 6656–6659. [Google Scholar] [CrossRef]
- Liang, C.; Mi, C.; Wang, F.; Zhao, C.; Cai, Y.; Ponomarenko, S.A. Vector optical coherence lattices generating controllable far-field beam profiles. Opt. Express 2017, 25, 9872–9885. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, L.; Peng, X.; Liu, L.; Wang, F.; Gao, Y.; Cai, Y. Partially coherent vortex beam with periodical coherence properties. J. Quant. Spectrosc. Radiat. 2019, 222, 138–144. [Google Scholar] [CrossRef]
- Chen, Y.; Ponomarenko, S.A.; Cai, Y. Experimental generation of optical coherence lattices. Appl. Phys. Lett. 2016, 109, 061107. [Google Scholar] [CrossRef]
- Ma, L.; Ponomarenko, S.A. Free-space propagation of optical coherence lattices and periodicity reciprocity. Opt. Express 2015, 23, 1848–1856. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Cai, Y.; Ponomarenko, S.A. Propagation of optical coherence lattices in the turbulent atmosphere. Opt. Lett. 2016, 41, 4182–4185. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, H.; Liu, L.; Chen, Y.; Wang, F.; Cai, Y. Orientation-selective sub-Rayleigh imaging with spatial coherence lattices. Opt. Express 2022, 30, 9548–9561. [Google Scholar] [CrossRef]
- Liang, C.; Liu, X.; Xu, Z.; Wang, F.; Wen, W.; Ponomarenko, S.A.; Cai, Y.; Ma, P. Perfect optical coherence lattices. Appl. Phys. Lett. 2021, 119, 131109. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Z.; Wang, F.; Chen, Y.; Cai, Y. Generation of a higher-order Poincare sphere beam array with spatial coherence engineering. Opt. Lett. 2022, 47, 5220–5223. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, J.; Cai, Y. Review on vortex beams with low spatial coherence. Adv. Phys. X 2019, 4, 1626766. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.; Liu, X. High-dimensional vortex beam encoding/decoding for high-speed free-space optical communication. Opt. Commun. 2019, 452, 40–47. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Guo, M.; Duan, M.; Feng, Z.; Yang, W. Optical trapping two types of particles using a focused vortex beam. Optik 2018, 166, 138–146. [Google Scholar] [CrossRef]
- Béché, A.; Juchtmans, R.; Verbeeck, J. Efficient creation of electron vortex beams for high resolution STEM imaging. Ultramicroscopy 2017, 178, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Anzolin, G.; Tamburini, F.; Bianchini, A.; Umbriaco, G.; Barbieri, C. Optical vortices with starlight. Astron. Astrophys. 2008, 488, 1159–1165. [Google Scholar] [CrossRef]
- Sueda, K.; Miyaji, G.; Miyanaga, N.; Nakatsuka, M. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express 2004, 12, 3548–3553. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Logachev, V.I.; Porfirev, A.P. Properties of vortex light fields generated by generalized spiral phase plates. Phys. Rev. A 2020, 101, 043829. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, J.; Li, H.; Wang, M.; Zang, H.; Zhang, Y.; Yao, J. Terahertz metasurface polarization detection employing vortex pattern recognition. Photon. Res. 2023, 11, 2256–2263. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, C.; Zhu, W.; Liu, M.; Zhang, S.; Zhang, S.; Chen, L.; Lezec, H.J.; Agrawal, A.; Lu, Y.; et al. Photonic Spin-Multiplexing Metasurface for Switchable Spiral Phase Contrast Imaging. Nano Lett. 2020, 20, 2791–2798. [Google Scholar] [CrossRef]
- Huang, Q.; Lu, X.; Zhang, H.; Wang, Z.; Yang, Y.; Zhan, Q.; Cai, Y.; Zhao, C. Economical generation of high-quality optical vortices with gradual-width Fermat spiral slit mask. Sci. China Phys. Mech. Astron. 2023, 66, 244211. [Google Scholar] [CrossRef]
- Lin, Q.; Cai, Y. Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams. Opt. Lett. 2002, 27, 216–218. [Google Scholar] [CrossRef]
- Liu, X.; Wu, T.; Liu, L.; Zhao, C.; Cai, Y. Experimental determination of the azimuthal and radial mode orders of a partially coherent LGpl beam (Invited Paper). Chin. Opt. Lett. 2017, 15, 030002. [Google Scholar]
- Liu, M.; Chen, J.; Zhang, Y.; Shi, Y.; Zhao, C.; Jin, S. Generation of coherence vortex by modulating the correlation structure of random lights. Photon. Res. 2019, 7, 1485–1492. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Zhu, S. Formation of optical vortices using coherent laser beam arrays. Opt. Commun. 2009, 282, 1088–1094. [Google Scholar] [CrossRef]
- Guo, L.; Xia, T.; Xu, Y.; Xiong, Y.; Leng, X.; Tao, S.; Tian, Y.; Cheng, S. Spoon-like Beams Generated with Exponential Phases. Coatings 2022, 12, 322. [Google Scholar] [CrossRef]
- Xie, G.F.; Li, P.; Liu, S.; Zhao, J.L. Focusing Properties of Symmetric Broken Azimuthally Polarized Beams Modulated by Non-uniform Spiral Phases. Guangzi Xuebao Acta Photonica Sin. 2015, 44, 17–22. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Wu, Y.; Li, M.; Li, X.; Gao, Y.; Liu, X. Flexible Construction of a Partially Coherent Optical Array. Photonics 2024, 11, 133. https://doi.org/10.3390/photonics11020133
Zhu K, Wu Y, Li M, Li X, Gao Y, Liu X. Flexible Construction of a Partially Coherent Optical Array. Photonics. 2024; 11(2):133. https://doi.org/10.3390/photonics11020133
Chicago/Turabian StyleZhu, Kaiqi, Yilin Wu, Mengdi Li, Xiaofei Li, Yaru Gao, and Xianlong Liu. 2024. "Flexible Construction of a Partially Coherent Optical Array" Photonics 11, no. 2: 133. https://doi.org/10.3390/photonics11020133
APA StyleZhu, K., Wu, Y., Li, M., Li, X., Gao, Y., & Liu, X. (2024). Flexible Construction of a Partially Coherent Optical Array. Photonics, 11(2), 133. https://doi.org/10.3390/photonics11020133