Flexible Construction of a Partially Coherent Optical Array
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gori, F.; Santarsiero, M. Devising genuine spatial correlation functions. Opt. Lett. 2007, 32, 3531–3533. [Google Scholar] [CrossRef]
- Gori, F.; Ramírez-Sánchez, V.; Santarsiero, M.; Shirai, T. On genuine cross-spectral density matrices. J. Opt. A Pure Appl. Opt. 2009, 11, 085706. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Huang, K.; Lu, X. Experimental generation of partially coherent circular Airy beams. Opt. Laser Technol. 2021, 137, 106814. [Google Scholar] [CrossRef]
- Seshadri, S.R. Average characteristics of a partially coherent Bessel—Gauss optical beam. J. Opt. Soc. Am. A 1999, 16, 2917–2927. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Wang, F.; Zhao, C.; Cai, Y. Elliptical Laguerre-Gaussian correlated Schell-model beam. Opt. Express 2014, 22, 13975–13987. [Google Scholar] [CrossRef]
- Wang, F.; Liang, C.; Yuan, Y.; Cai, Y. Generalized multi-Gaussian correlated Schell-model beam: From theory to experiment. Opt. Express 2014, 22, 23456–23464. [Google Scholar] [CrossRef]
- Li, X.; Wei, H.; Visser, T.D.; Cai, Y.; Liu, X. Partially coherent perfect vortex beam generated by an axicon phase. Appl. Phys. Lett. 2021, 119, 171108. [Google Scholar] [CrossRef]
- Dong, M.; Zhao, C.; Cai, Y.; Yang, Y. Partially coherent vortex beams: Fundamentals and applications. Sci. China Phys. Mech. Astron. 2021, 64, 224201. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Z.; Chen, Y.; Cai, Y. Research advances of partially coherent beams with novel coherence structures: Engineering and applications. Opto-Electron. Eng. 2022, 49, 220178. [Google Scholar]
- Yu, J.; Zhu, X.; Lin, S.; Wang, F.; Gbur, G.; Cai, Y. Vector partially coherent beams with prescribed non-uniform correlation structure. Opt. Lett. 2020, 45, 3824–3827. [Google Scholar] [CrossRef]
- Wang, H.; Peng, X.; Zhang, H.; Liu, L.; Chen, Y.; Wang, F.; Cai, Y. Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum. Nanophotonics 2022, 11, 689–696. [Google Scholar] [CrossRef]
- He, Q.; Turunen, J.; Friberg, A.T. Propagation and imaging experiments with Gaussian Schell-model beams. Opt. Commun. 1988, 67, 245–250. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Y.; Yu, J.; Liu, X.; Liu, L. Chapter Three—Generation of Partially Coherent Beams. Prog. Opt. 2017, 62, 157–223. [Google Scholar]
- Zhou, Y.; Cui, Z.; Han, Y. Polarization and coherence properties in self-healing propagation of a partially coherent radially polarized twisted beam. Opt. Express 2022, 30, 23448–23462. [Google Scholar] [CrossRef]
- Ding, C.; Koivurova, M.; Turunen, J.; Pan, L. Self-focusing of a partially coherent beam with circular coherence. J. Opt. Soc. Am. A 2017, 34, 1441–1447. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, J.; Wang, F.; Cai, Y. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam. Phys. Rev. A 2015, 91, 013823. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, Z.; Zhang, M.; Mao, Y. Propagation characteristics of a partially coherent self-shifting beam in random media. Appl. Opt. 2020, 59, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, X.; Cai, Y. Propagation of Partially Coherent Beam in Turbulent Atmosphere: A Review (Invited Review). Prog. Electromagn. Res. 2015, 150, 123–143. [Google Scholar] [CrossRef]
- Huang, X.; Deng, Z.; Shi, X.; Bai, Y.; Fu, X. Average intensity and beam quality of optical coherence lattices in oceanic turbulence with anisotropy. Opt. Express 2018, 26, 4786–4797. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Wang, F.; Cai, Y. Scattering of Partially Coherent Vector Beams by a Deterministic Medium Having Parity-Time Symmetry. Photonics 2022, 9, 140. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Dong, Z.; Peng, D.; Chen, Y.; Wang, F.; Cai, Y. Robust Far-Field Optical Image Transmission with Structured Random Light Beams. Phys. Rev. Appl. 2022, 17, 024043. [Google Scholar] [CrossRef]
- Ricklin, J.C.; Davidson, F.M. Atmospheric optical communication with a Gaussian Schell beam. J. Opt. Soc. Am. A 2003, 20, 856–866. [Google Scholar] [CrossRef]
- Kermisch, D. Partially coherent image processing by laser scanning. J. Opt. Soc. Am. 1975, 65, 887–891. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Wang, F.; Cai, Y.; Liang, C.; Korotkova, O. Robust far-field imaging by spatial coherence engineering. Opto-Electron. Adv. 2021, 4, 210027. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, X.; Ma, D. Potentials of radial partially coherent beams in free-space optical communication: A numerical investigation. Appl. Opt. 2017, 56, 2851–2857. [Google Scholar] [CrossRef]
- Gbur, G.; Visser, T.D. Chapter 5—The Structure of Partially Coherent Fields. Prog. Opt. 2010, 55, 285–341. [Google Scholar]
- Wu, Y.; Mei, H.; Dai, C.; Zhao, F.; Wei, H. Design and analysis of performance of FSO communication system based on partially coherent beams. Opt. Commun. 2020, 472, 126041. [Google Scholar] [CrossRef]
- Forbes, A.; Dudley, A.; McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photon. 2016, 8, 200–227. [Google Scholar] [CrossRef]
- Guo, L.; Feng, Z.; Fu, Y.; Min, C. Generation of vector beams array with a single spatial light modulator. Opt. Commun. 2021, 490, 126915. [Google Scholar] [CrossRef]
- Streibl, N. Beam Shaping with Optical Array Generators. J. Mod. Opt. 1989, 36, 1559–1573. [Google Scholar] [CrossRef]
- Chen, B.; Legant, W.R.; Wang, K.; Shao, L.; Milkie, D.E.; Davidson, M.W.; Janetopoulos, C.; Wu, X.S.; Hammer, J.A.; Liu, Z.; et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 2014, 346, 1257998. [Google Scholar] [CrossRef]
- Schäfer, F.; Fukuhara, T.; Sugawa, S.; Takasu, Y.; Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2020, 2, 411–425. [Google Scholar] [CrossRef]
- Ma, L.; Ponomarenko, S.A. Optical coherence gratings and lattices. Opt. Lett. 2014, 39, 6656–6659. [Google Scholar] [CrossRef]
- Liang, C.; Mi, C.; Wang, F.; Zhao, C.; Cai, Y.; Ponomarenko, S.A. Vector optical coherence lattices generating controllable far-field beam profiles. Opt. Express 2017, 25, 9872–9885. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, L.; Peng, X.; Liu, L.; Wang, F.; Gao, Y.; Cai, Y. Partially coherent vortex beam with periodical coherence properties. J. Quant. Spectrosc. Radiat. 2019, 222, 138–144. [Google Scholar] [CrossRef]
- Chen, Y.; Ponomarenko, S.A.; Cai, Y. Experimental generation of optical coherence lattices. Appl. Phys. Lett. 2016, 109, 061107. [Google Scholar] [CrossRef]
- Ma, L.; Ponomarenko, S.A. Free-space propagation of optical coherence lattices and periodicity reciprocity. Opt. Express 2015, 23, 1848–1856. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Cai, Y.; Ponomarenko, S.A. Propagation of optical coherence lattices in the turbulent atmosphere. Opt. Lett. 2016, 41, 4182–4185. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, H.; Liu, L.; Chen, Y.; Wang, F.; Cai, Y. Orientation-selective sub-Rayleigh imaging with spatial coherence lattices. Opt. Express 2022, 30, 9548–9561. [Google Scholar] [CrossRef]
- Liang, C.; Liu, X.; Xu, Z.; Wang, F.; Wen, W.; Ponomarenko, S.A.; Cai, Y.; Ma, P. Perfect optical coherence lattices. Appl. Phys. Lett. 2021, 119, 131109. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Z.; Wang, F.; Chen, Y.; Cai, Y. Generation of a higher-order Poincare sphere beam array with spatial coherence engineering. Opt. Lett. 2022, 47, 5220–5223. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, J.; Cai, Y. Review on vortex beams with low spatial coherence. Adv. Phys. X 2019, 4, 1626766. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.; Liu, X. High-dimensional vortex beam encoding/decoding for high-speed free-space optical communication. Opt. Commun. 2019, 452, 40–47. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Guo, M.; Duan, M.; Feng, Z.; Yang, W. Optical trapping two types of particles using a focused vortex beam. Optik 2018, 166, 138–146. [Google Scholar] [CrossRef]
- Béché, A.; Juchtmans, R.; Verbeeck, J. Efficient creation of electron vortex beams for high resolution STEM imaging. Ultramicroscopy 2017, 178, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Anzolin, G.; Tamburini, F.; Bianchini, A.; Umbriaco, G.; Barbieri, C. Optical vortices with starlight. Astron. Astrophys. 2008, 488, 1159–1165. [Google Scholar] [CrossRef]
- Sueda, K.; Miyaji, G.; Miyanaga, N.; Nakatsuka, M. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express 2004, 12, 3548–3553. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Logachev, V.I.; Porfirev, A.P. Properties of vortex light fields generated by generalized spiral phase plates. Phys. Rev. A 2020, 101, 043829. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, J.; Li, H.; Wang, M.; Zang, H.; Zhang, Y.; Yao, J. Terahertz metasurface polarization detection employing vortex pattern recognition. Photon. Res. 2023, 11, 2256–2263. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, C.; Zhu, W.; Liu, M.; Zhang, S.; Zhang, S.; Chen, L.; Lezec, H.J.; Agrawal, A.; Lu, Y.; et al. Photonic Spin-Multiplexing Metasurface for Switchable Spiral Phase Contrast Imaging. Nano Lett. 2020, 20, 2791–2798. [Google Scholar] [CrossRef]
- Huang, Q.; Lu, X.; Zhang, H.; Wang, Z.; Yang, Y.; Zhan, Q.; Cai, Y.; Zhao, C. Economical generation of high-quality optical vortices with gradual-width Fermat spiral slit mask. Sci. China Phys. Mech. Astron. 2023, 66, 244211. [Google Scholar] [CrossRef]
- Lin, Q.; Cai, Y. Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams. Opt. Lett. 2002, 27, 216–218. [Google Scholar] [CrossRef]
- Liu, X.; Wu, T.; Liu, L.; Zhao, C.; Cai, Y. Experimental determination of the azimuthal and radial mode orders of a partially coherent LGpl beam (Invited Paper). Chin. Opt. Lett. 2017, 15, 030002. [Google Scholar]
- Liu, M.; Chen, J.; Zhang, Y.; Shi, Y.; Zhao, C.; Jin, S. Generation of coherence vortex by modulating the correlation structure of random lights. Photon. Res. 2019, 7, 1485–1492. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Zhu, S. Formation of optical vortices using coherent laser beam arrays. Opt. Commun. 2009, 282, 1088–1094. [Google Scholar] [CrossRef]
- Guo, L.; Xia, T.; Xu, Y.; Xiong, Y.; Leng, X.; Tao, S.; Tian, Y.; Cheng, S. Spoon-like Beams Generated with Exponential Phases. Coatings 2022, 12, 322. [Google Scholar] [CrossRef]
- Xie, G.F.; Li, P.; Liu, S.; Zhao, J.L. Focusing Properties of Symmetric Broken Azimuthally Polarized Beams Modulated by Non-uniform Spiral Phases. Guangzi Xuebao Acta Photonica Sin. 2015, 44, 17–22. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Wu, Y.; Li, M.; Li, X.; Gao, Y.; Liu, X. Flexible Construction of a Partially Coherent Optical Array. Photonics 2024, 11, 133. https://doi.org/10.3390/photonics11020133
Zhu K, Wu Y, Li M, Li X, Gao Y, Liu X. Flexible Construction of a Partially Coherent Optical Array. Photonics. 2024; 11(2):133. https://doi.org/10.3390/photonics11020133
Chicago/Turabian StyleZhu, Kaiqi, Yilin Wu, Mengdi Li, Xiaofei Li, Yaru Gao, and Xianlong Liu. 2024. "Flexible Construction of a Partially Coherent Optical Array" Photonics 11, no. 2: 133. https://doi.org/10.3390/photonics11020133
APA StyleZhu, K., Wu, Y., Li, M., Li, X., Gao, Y., & Liu, X. (2024). Flexible Construction of a Partially Coherent Optical Array. Photonics, 11(2), 133. https://doi.org/10.3390/photonics11020133