Experimentation and Analysis of Intra-Cavity Beam-Splitting Method to Enhance the Uniformity of Light in the Powersphere
Abstract
:1. Introduction
2. System Design and Analysis
2.1. System Design
2.2. Optical Path Theory
- (1)
- Transmitted and transmitted optical paths
- (2)
- Transmitted and reflected optical paths
- (3)
- Reflected and transmitted optical paths
- (1)
- The total ABCD matrix of transmitted and transmitted optical path;
- (2)
- The total ABCD matrix of transmitted and reflected optical paths
- (3)
- The total ABCD matrix of reflected and transmitted optical paths
- (4)
- The total ABCD matrix of reflected and reflected optical paths
3. Modeling and Simulation Analysis
4. Testing Experiment and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, Y.L.; Shibui, S.; Koga, M.; Hayashi, S.; Uchida, S. Optical Wireless Power Transmission Using a GaInP Power Converter Cell under High-Power 635 nm Laser Irradiation of 53.5 W/cm2. Energies 2022, 15, 3690. [Google Scholar] [CrossRef]
- Asaba, K.; Miyamoto, T. System Level Requirement Analysis of Beam Alignment and Shaping for Optical Wireless Power Transmission System by Semi–Empirical Simulation. Photonics 2022, 9, 452. [Google Scholar] [CrossRef]
- Zhao, M.; Miyamoto, T. 1 W High Performance LED-Array Based Optical Wireless Power Transmission System for IoT Terminals. Photonics 2022, 9, 576. [Google Scholar] [CrossRef]
- Jin, K.; Zhou, W. Wireless Laser Power Transmission: A Review of Recent Progress. IEEE Trans. Power Electron. 2019, 34, 3842–3859. [Google Scholar] [CrossRef]
- Asaba, K.; Miyamoto, T. Relaxation of Beam Irradiation Accuracy of Cooperative Optical Wireless Power Transmission in Terms of Fly Eye Module with Beam Confinement Mechanism. Photonics 2022, 9, 995. [Google Scholar] [CrossRef]
- Shindo, N.; Kobatake, T.; Masson, D.; Fafard, S.; Matsuura, M. Optically Powered and Controlled Drones Using Optical Fibers for Airborne Base Stations. Photonics 2022, 9, 882. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, D.; Zhu, D.; Shi, Q.; Gu, J.; Ai, Y. Design and experiment for realization of laser wireless power transmission for small unmanned aerial vehicles. In AOPC 2015: Advances in Laser Technology and Applications; SPIE: Bellingham, WA, USA, 2015; Volume 9671, pp. 133–139. [Google Scholar]
- Liu, X.; Hua, W.; Guo, T. Methods to improve efficiency of photovoltaic receiver for laser powered unmanned aerial vehicle. Infrared Laser Eng. 2016, 45, 91–95. [Google Scholar]
- Lin, X.; Guo, Y.; Han, M.; Yang, Y. Research on Two-Dimensional Laser Beam Scanning and Tracking System Based on Four Quadrant Detector. Semicond. Optoelectron. 2018, 39, 425–430. [Google Scholar]
- Shi, D.; Zhang, L.; Ma, H.; Wang, Z.; Wang, Y.; Cui, Z. Research on Wireless Power transmission system between satellites. In Proceedings of the Wireless Power Transfer Conference, Aveiro, Portugal, 5–6 May 2016. [Google Scholar] [CrossRef]
- Qiao, L.; Yang, Y.; Physics, D.O. Experimental research of laser wireless power transmission efficiency. Laser Technol. 2014, 38, 590–594. [Google Scholar]
- Xiao-Guang, L.; Wen-Shen, H.; Xun, L.; Tong, G. Design of Photovoltaic Receiver with High Circuitry Efficiency for Laser Wireless Power Transmission System. Laser J. 2015, 36, 100–103. [Google Scholar]
- He, T.; Zhang, L.; Zheng, G.; Yang, C.; Wang, M.; Pan, G. Analysis and Experiment of the Laser Wireless Energy Transmission Efficiency Based on the Receiver of Powersphere. IEEE Access 2021, 9, 55340. [Google Scholar] [CrossRef]
- Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. Self-Adaptive Incremental Conductance Algorithm for Swift and Ripple-Free Maximum Power Harvesting from PV Array. IEEE Trans. Ind. Inform. 2018, 14, 2031–2041. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Kotlyar, V.V. Gaussian beams with multiple polarization singularities. Opt. Commun. 2018, 423, 111–120. [Google Scholar] [CrossRef]
- Wang, Q. The diffraction of Gaussian laser beam for slit. Optik 2019, 179, 579–581. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Yang, H.; Deng, G.; Yang, Q.; Niu, R.; Gou, Y. The Effect of Non-Uniform Irradiation on Laser Photovoltaics: Experiments and Simulations. Photonics 2022, 9, 493. [Google Scholar] [CrossRef]
- He, T.; Zheng, G.; Liu, X.; Wu, Q.; Wang, M.; Yang, C.; Lv, Z. Analysis and Experiment of Laser Wireless Power Transmission Based on Photovoltaic Panel. Photonics 2022, 9, 684. [Google Scholar] [CrossRef]
- Zhao, M.; Miyamoto, T. Efficient LED-Array Optical Wireless Power Transmission System for Portable Power Supply and Its Compact Modularization. Photonics 2023, 10, 824. [Google Scholar] [CrossRef]
- Matsuura, M. Recent Advancement in Power-over-Fiber Technologies. Photonics 2021, 8, 335. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. High-Efficiency and High-Power Multijunction InGaAs/InP Photovoltaic Laser Power Converters for 1470 nm. Photonics 2022, 9, 438. [Google Scholar] [CrossRef]
- Matsuura, M.; Ikukawa, A.; Kuboki, H.; Kawamura, Y. Investigation of Crosstalk between Data Signals and Feed Light in Power-over-Fiber. Photonics 2022, 9, 369. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D. Onset of Quantum-Confined Stark Effects in Multijunction Photovoltaic Laser Power Converters Designed with Thin Subcells. Photonics 2023, 10, 1243. [Google Scholar] [CrossRef]
- Zhao, M.; Miyamoto, T. Optimization for compact and high output LED-based optical wireless power transmission system. Photonics 2022, 9, 14. [Google Scholar] [CrossRef]
- Lee, S.; Lim, N.; Choi, W.; Lee, Y.; Baek, J.; Park, J. Study on Battery Charging Converter for MPPT Control of Laser Wireless Power Transmission System. Electronics 2020, 9, 1745. [Google Scholar] [CrossRef]
- Zhou, W.; Jin, K. Optimal Photovoltaic Array Configuration Under Gaussian Laser Beam Condition for Wireless Power Transmission. IEEE Trans. Power Electr. 2017, 32, 3662–3672. [Google Scholar] [CrossRef]
- Satpathy, P.R.; Sharma, R.; Jena, S. A shade dispersion interconnection scheme for partially shaded modules in a solar PV array network. Energy 2017, 139, 350–365. [Google Scholar] [CrossRef]
- Nannam, H.C.; Banerjee, A. A novel control technique for a single-phase grid-tied inverter to extract peak power from PV-Based home energy systems. AIMS Energy 2021, 9, 414–415. [Google Scholar] [CrossRef]
- Ortabasi, U.; Friedman, H.W. PowerSphere: A novel photovoltaic cavity converter using low bandgap TPV cells for efficient conversion of high power laser beams to electricity. AIP Conf. Proc. 2004, 738, 142–152. [Google Scholar]
- Ortabasi, U.; Friedman, H.W. Powersphere: A Photovoltaic Cavity Converter for Wireless Power Transmission using High Power Lasers. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006; pp. 126–129. [Google Scholar]
- He, T.; Pan, G.; Zhang, L.; Xu, F.; Yang, C.; Chan, C.C.; Wang, M.; Zheng, G. Design and Fabrication of Large-Size Powersphere for Wireless Energy Transmission via Laser. Photonics 2021, 8, 35. [Google Scholar] [CrossRef]
- He, T.; Zheng, G.; Wu, Q.; Huang, H.; Wan, L.; Xu, K.; Shi, T.; Lv, Z. Analysis and Experiment of Laser Energy Distribution of Laser Wireless Power Transmission Based on a Powersphere Receiver. Photonics 2023, 10, 844. [Google Scholar] [CrossRef]
- Diouf, M.; Lin, Z.; Harling, M.; Toussaint, K.C. Demonstration of speckle resistance using space–time light sheets. Sci. Rep. 2022, 12, 14064. [Google Scholar] [CrossRef] [PubMed]
- Diouf, M.; Lin, Z.; Harling, M.; Krishna, K.; Toussaint, K.C. Interferometric phase stability from Gaussian and space–time light sheets. Optica 2023, 10, 1161. [Google Scholar] [CrossRef]
With Beam Splitting | Without Beam Splitting | ||
---|---|---|---|
Hemisphere 1 | Voltage (V) | 11.29 | 40.42 |
Current (mA) | 0.30 | 0.54 | |
Hemisphere 2 | Voltage (V) | 3.35 | 3.07 |
Current (mA) | 0.06 | 0.06 | |
Total output | Voltage (V) | 5.65 | 6.28 |
Current (mA) | 0.40 | 0.58 |
Parameter | With Beam Splitting | Without Beam Splitting |
---|---|---|
Voltage (V) | 0.29 | 0.08 |
Current (mA) | 0.20 | 0.11 |
Power (mW) | 0.059 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, T.; Pan, G.; Zheng, G.; Xu, Z.; Lv, Z.; Wu, Q.; Wan, L.; Huang, H.; Shi, T. Experimentation and Analysis of Intra-Cavity Beam-Splitting Method to Enhance the Uniformity of Light in the Powersphere. Photonics 2024, 11, 128. https://doi.org/10.3390/photonics11020128
He T, Pan G, Zheng G, Xu Z, Lv Z, Wu Q, Wan L, Huang H, Shi T. Experimentation and Analysis of Intra-Cavity Beam-Splitting Method to Enhance the Uniformity of Light in the Powersphere. Photonics. 2024; 11(2):128. https://doi.org/10.3390/photonics11020128
Chicago/Turabian StyleHe, Tiefeng, Guobing Pan, Guoliang Zheng, Zikun Xu, Zhijian Lv, Qingyang Wu, Lili Wan, Haixuan Huang, and Tianyu Shi. 2024. "Experimentation and Analysis of Intra-Cavity Beam-Splitting Method to Enhance the Uniformity of Light in the Powersphere" Photonics 11, no. 2: 128. https://doi.org/10.3390/photonics11020128
APA StyleHe, T., Pan, G., Zheng, G., Xu, Z., Lv, Z., Wu, Q., Wan, L., Huang, H., & Shi, T. (2024). Experimentation and Analysis of Intra-Cavity Beam-Splitting Method to Enhance the Uniformity of Light in the Powersphere. Photonics, 11(2), 128. https://doi.org/10.3390/photonics11020128