Spectral Shape Control of Laser-Induced Terahertz Waves from Micro Split-Ring Resonators Made of Metallic Nanostructures
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hangyo, M. Development and Future Prospects of Terahertz Technology. Jpn. J. Appl. Phys. 2015, 54, 120101. [Google Scholar] [CrossRef]
- Ota, M.; Kan, K.; Komada, S.; Wang, Y.; Agulto, V.C.; Mag-usara, V.K.; Arikawa, Y.; Asakawa, M.R.; Sakawa, Y.; Matsui, T.; et al. Ultrafast Visualization of an Electric Field under the Lorentz Transformation. Nat. Phys. 2022, 18, 1436–1440. [Google Scholar] [CrossRef]
- Kleine-Ostmann, T.; Nagatsuma, T. A Review on Terahertz Communications Research. J. Infrared Millim. Terahertz Waves 2011, 32, 143–171. [Google Scholar] [CrossRef]
- Yamamoto, K.; Yamaguchi, M.; Miyamaru, F.; Tani, M.; Hangyo, M.; Ikeda, T.; Matsushita, A.; Koide, K.; Tatsuno, M.; Minami, Y. Noninvasive Inspection of C-4 Explosive in Mails by Terahertz Time-Domain Spectroscopy. Jpn. J. Appl. Phys. Part 2 Lett. 2004, 43, L414. [Google Scholar] [CrossRef]
- Castro-Camus, E.; Koch, M.; Mittleman, D.M. Recent Advances in Terahertz Imaging: 1999 to 2021. Appl. Phys. B 2022, 128, 12. [Google Scholar] [CrossRef]
- Zhang, Z.; Kanega, M.; Maruyama, K.; Kurihara, T.; Nakajima, M.; Tachizaki, T.; Sato, M.; Kanemitsu, Y.; Hirori, H. Spin Switching in Sm0.7Er0.3FeO3 Triggered by Terahertz Magnetic-Field Pulses. Nat. Mater. 2024. [Google Scholar] [CrossRef]
- Markelz, A.G.; Mittleman, D.M. Perspective on Terahertz Applications in Bioscience and Biotechnology. ACS Photonics 2022, 9, 1117–1126. [Google Scholar] [CrossRef]
- Singh, G.; Singh Sandha, K.; Kansal, A. GA Optimized Novel Design and Analysis of Graphene-Based Antennas for THz Spectroscopic Security Applications. J. Magn. Magn. Mater. 2024, 608, 172454. [Google Scholar] [CrossRef]
- Agulto, V.C.; Iwamoto, T.; Kitahara, H.; Toya, K.; Mag-usara, V.K.; Imanishi, M.; Mori, Y.; Yoshimura, M.; Nakajima, M. Terahertz Time-Domain Ellipsometry with High Precision for the Evaluation of GaN Crystals with Carrier Densities up to 1020 cm−3. Sci. Rep. 2021, 11, 18129. [Google Scholar] [CrossRef] [PubMed]
- Baxter, J.B.; Guglietta, G.W. Terahertz Spectroscopy. Anal. Chem. 2011, 83, 4342–4368. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, R.; Hendry, E.; Shan, J.; Heinz, T.F.; Bonn, M. Carrier Dynamics in Semiconductors Studied with Time-Resolved Terahertz Spectroscopy. Rev. Mod. Phys. 2011, 83, 543–586. [Google Scholar] [CrossRef]
- Kampfrath, T.; Tanaka, K.; Nelson, K.A. Resonant and Nonresonant Control over Matter and Light by Intense Terahertz Transients. Nat. Photonics 2013, 7, 680–690. [Google Scholar] [CrossRef]
- Li, G.; Nie, X.; Liao, Y.; Yin, W.; Zhou, W.; Gao, Y.; Xia, N.; Cui, H. Photogenerated Carrier Density Dependence of Ultrafast Carrier Dynamics in Intrinsic 6H-SiC Measured by Optical-Pump Terahertz-Probe Spectroscopy. Opt. Commun. 2022, 511, 127979. [Google Scholar] [CrossRef]
- Wang, J.; Cai, W.; Lu, W.; Lu, S.; Kano, E.; Agulto, V.C.; Sarkar, B.; Watanabe, H.; Ikarashi, N.; Iwamoto, T.; et al. Observation of 2D-Magnesium-Intercalated Gallium Nitride Superlattices. Nature 2024, 631, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Vieweg, N.; Rettich, F.; Deninger, A.; Roehle, H.; Dietz, R.; Göbel, T.; Schell, M. Terahertz-Time Domain Spectrometer with 90 DB Peak Dynamic Range. J. Infrared Millim. Terahertz Waves 2014, 35, 823–832. [Google Scholar] [CrossRef]
- Yardimci, N.T.; Lu, H.; Jarrahi, M. High Power Telecommunication-Compatible Photoconductive Terahertz Emitters Based on Plasmonic Nano-Antenna Arrays. Appl. Phys. Lett. 2016, 109, 191103. [Google Scholar] [CrossRef]
- Markelz, A.G.; Asmar, N.G.; Brar, B.; Gwinn, E.G. Interband Impact Ionization by Terahertz Illumination of InAs Heterostructures. Appl. Phys. Lett. 1996, 69, 3975–3977. [Google Scholar] [CrossRef]
- Piyathilaka, H.P.; Sooriyagoda, R.; Dewasurendra, V.; Johnson, M.B.; Zawilski, K.T.; Schunemann, P.G.; Bristow, A.D. Terahertz Generation by Optical Rectification in Chalcopyrite Crystals ZnGeP2, CdGeP2 and CdSiP2. Opt. Express 2019, 27, 16958. [Google Scholar] [CrossRef]
- Seifert, T.; Jaiswal, S.; Martens, U.; Hannegan, J.; Braun, L.; Maldonado, P.; Freimuth, F.; Kronenberg, A.; Henrizi, J.; Radu, I.; et al. Efficient Metallic Spintronic Emitters of Ultrabroadband Terahertz Radiation. Nat. Photonics 2016, 10, 483–488. [Google Scholar] [CrossRef]
- Qiu, H.S.; Kato, K.; Hirota, K.; Sarukura, N.; Yoshimura, M.; Nakajima, M. Layer Thickness Dependence of the Terahertz Emission Based on Spin Current in Ferromagnetic Heterostructures. Opt. Express 2018, 26, 15247. [Google Scholar] [CrossRef]
- Yadav, S.; Kumari, M.; Nayak, D.; Moona, G.; Sharma, R.; Vijayan, N.; Jewariya, M. Nonlinear Optical Single Crystals for Terahertz Generation and Detection. J. Nonlinear Opt. Phys. Mater. 2022, 31, 2230001. [Google Scholar] [CrossRef]
- Polyushkin, D.K.; Hendry, E.; Stone, E.K.; Barnes, W.L. THz Generation from Plasmonic Nanoparticle Arrays. Nano Lett. 2011, 11, 4718–4724. [Google Scholar] [CrossRef]
- Luo, L.; Chatzakis, I.; Wang, J.; Niesler, F.B.P.; Wegener, M.; Koschny, T.; Soukoulis, C.M. Broadband Terahertz Generation from Metamaterials. Nat. Commun. 2014, 5, 3055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Mu, K.; Zhou, Y.; Wang, H.; Zhang, C.; Zhang, X.-C. High-Power THz to IR Emission by Femtosecond Laser Irradiation of Random 2D Metallic Nanostructures. Sci. Rep. 2015, 5, 12536. [Google Scholar] [CrossRef]
- Kato, K.; Takano, K.; Tadokoro, Y.; Nakajima, M. Terahertz Wave Generation from Spontaneously Formed Nanostructures in Silver Nanoparticle Ink. Opt. Lett. 2016, 41, 2125. [Google Scholar] [CrossRef] [PubMed]
- Takano, K.; Asai, M.; Kato, K.; Komiyama, H.; Yamaguchi, A.; Iyoda, T.; Tadokoro, Y.; Nakajima, M.; Bakunov, M.I. Terahertz Emission from Gold Nanorods Irradiated by Ultrashort Laser Pulses of Different Wavelengths. Sci. Rep. 2019, 9, 3280. [Google Scholar] [CrossRef] [PubMed]
- Welsh, G.H.; Hunt, N.T.; Wynne, K. Terahertz-Pulse Emission through Laser Excitation of Surface Plasmons in a Metal Grating. Phys. Rev. Lett. 2007, 98, 026803. [Google Scholar] [CrossRef]
- Ramakrishnan, G.; Planken, P.C.M. Percolation-Enhanced Generation of Terahertz Pulses by Optical Rectification on Ultrathin Gold Films. Opt. Lett. 2011, 36, 2572. [Google Scholar] [CrossRef]
- Kajikawa, K.; Nagai, Y.; Uchiho, Y.; Ramakrishnan, G.; Kumar, N.; Ramanandan, G.K.P.; Planken, P.C.M. Terahertz Emission from Surface-Immobilized Gold Nanospheres. Opt. Lett. 2012, 37, 4053. [Google Scholar] [CrossRef]
- Ramanandan, G.K.P.; Ramakrishnan, G.; Kumar, N.; Adam, A.J.L.; Planken, P.C.M. Emission of Terahertz Pulses from Nanostructured Metal Surfaces. J. Phys. D Appl. Phys. 2014, 47, 374003. [Google Scholar] [CrossRef]
- Liu, Y.; Park, S.-G.; Weiner, A.M. Terahertz Waveform Synthesis via Optical Pulse Shaping. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 709–719. [Google Scholar] [CrossRef]
- Sato, M.; Higuchi, T.; Kanda, N.; Konishi, K.; Yoshioka, K.; Suzuki, T.; Misawa, K.; Kuwata-Gonokami, M. Terahertz Polarization Pulse Shaping with Arbitrary Field Control. Nat. Photonics 2013, 7, 724–731. [Google Scholar] [CrossRef]
- Miyamaru, F.; Hangyo, M. Finite Size Effect of Transmission Property for Metal Hole Arrays in Subterahertz Region. Appl. Phys. Lett. 2004, 84, 2742–2744. [Google Scholar] [CrossRef]
- Danielson, J.R.; Amer, N.; Lee, Y.S. Generation of Arbitrary Terahertz Wave Forms in Fanned-out Periodically Poled Lithium Niobate. Appl. Phys. Lett. 2006, 89, 211118. [Google Scholar] [CrossRef]
- Zhu, F.; Lin, Y.-S. Programmable Multidigit Metamaterial Using Terahertz Electric Spilt-Ring Resonator. Opt. Laser Technol. 2021, 134, 106635. [Google Scholar] [CrossRef]
- Lee, Y.S.; Amer, N.; Hurlbut, W.C. Terahertz Pulse Shaping via Optical Rectification in Poled Lithium Niobate. Appl. Phys. Lett. 2003, 82, 170–172. [Google Scholar] [CrossRef]
- Polyushkin, D.K.; Hendry, E.; Barnes, W.L. Controlling the Generation of THz Radiation from Metallic Films Using Periodic Microstructure. Appl. Phys. B 2015, 120, 53–59. [Google Scholar] [CrossRef]
- Murata, K.; Matsumoto, J.; Tezuka, A.; Matsuba, Y.; Yokoyama, H. Super-Fine Ink-Jet Printing: Toward the Minimal Manufacturing System. Microsyst. Technol. 2005, 12, 2–7. [Google Scholar] [CrossRef]
- Oda, M.; Ohsawa, M.; Tei, K.; Hayashi, S.; Hayashi, Y. Individually Dispersed Nanoparticles Formed by Gas Evaporation Method and Their Applications. In Proceedings of the NIP & Digital Fabrication Conference, 2008 International Conference on Digital Printing Technologies, Society for Imaging Science and Technology, Pittsburgh, PA, USA, 6–11 September 2008; Volume 2008, p. 375. [Google Scholar]
- Tan, H.W.; An, J.; Chua, C.K.; Tran, T. Metallic Nanoparticle Inks for 3D Printing of Electronics. Adv. Electron. Mater. 2019, 5, 1800831. [Google Scholar] [CrossRef]
- Walther, M.; Ortner, A.; Meier, H.; Löffelmann, U.; Smith, P.J.; Korvink, J.G. Terahertz Metamaterials Fabricated by Inkjet Printing. Appl. Phys. Lett. 2009, 95, 251107. [Google Scholar] [CrossRef]
- Takano, K.; Kawabata, T.; Hsieh, C.F.; Akiyama, K.; Miyamaru, F.; Abe, Y.; Tokuda, Y.; Pan, R.P.; Pan, C.L.; Hangyo, M. Fabrication of Terahertz Planar Metamaterials Using a Super-Fine Ink-Jet Printer. Appl. Phys. Express 2010, 3, 016701. [Google Scholar] [CrossRef]
- Takano, K.; Chiyoda, Y.; Nishida, T.; Miyamaru, F.; Kawabata, T.; Sasaki, H.; Takeda, M.W.; Hangyo, M. Optical Switching of Terahertz Radiation from Meta-Atom-Loaded Photoconductive Antennas. Appl. Phys. Lett. 2011, 99, 19–22. [Google Scholar] [CrossRef]
- Suo, H.; Takano, K.; Ohno, S.; Kurosawa, H.; Nakayama, K.; Ishihara, T.; Hangyo, M. Polarization Property of Terahertz Wave Emission from Gammadion-Type Photoconductive Antennas. Appl. Phys. Lett. 2013, 103, 111106. [Google Scholar] [CrossRef]
- Takano, K.; Harada, H.; Yoshimura, M.; Nakajima, M. Quantized Conductance Observed during Sintering of Silver Nanoparticles by Intense Terahertz Pulses. Appl. Phys. Lett. 2018, 112, 163102. [Google Scholar] [CrossRef]
- Giuliano, B.M.; Gavdush, A.A.; Müller, B.; Zaytsev, K.I.; Grassi, T.; Ivlev, A.V.; Palumbo, M.E.; Baratta, G.A.; Scirè, C.; Komandin, G.A.; et al. Broadband Spectroscopy of Astrophysical Ice Analogues. Astron. Astrophys. 2019, 629, A112. [Google Scholar] [CrossRef]
- Padilla, W.J.; Taylor, A.J.; Highstrete, C.; Lee, M.; Averitt, R.D. Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies. Phys. Rev. Lett. 2006, 96, 107401. [Google Scholar] [CrossRef]
- Ako, R.T.; Lee, W.S.L.; Bhaskaran, M.; Sriram, S.; Withayachumnankul, W. Broadband and Wide-Angle Reflective Linear Polarization Converter for Terahertz Waves. APL Photonics 2019, 4, 096104. [Google Scholar] [CrossRef]
- Zhang, X.C.; Auston, D.H. Optoelectronic Measurement of Semiconductor Surfaces and Interfaces with Femtosecond Optics. J. Appl. Phys. 1992, 71, 326–338. [Google Scholar] [CrossRef]
- Polyushkin, D.K.; Márton, I.; Rácz, P.; Dombi, P.; Hendry, E.; Barnes, W.L. Mechanisms of THz Generation from Silver Nanoparticle and Nanohole Arrays Illuminated by 100 Fs Pulses of Infrared Light. Phys. Rev. B 2014, 89, 125426. [Google Scholar] [CrossRef]
- Kurosawa, H.; Ishihara, T. Surface Plasmon Drag Effect in a Dielectrically Modulated Metallic Thin Film. Opt. Express 2012, 20, 1561. [Google Scholar] [CrossRef]
- Xie, L.; Gao, W.; Shu, J.; Ying, Y.; Kono, J. Extraordinary Sensitivity Enhancement by Metasurfaces in Terahertz Detection of Antibiotics. Sci. Rep. 2015, 5, 8671. [Google Scholar] [CrossRef] [PubMed]
Name | Lo (µm) | w (µm) | g (µm) |
---|---|---|---|
S80 | 80 | 20 | 20 |
S55 | 55 | 15 | 25 |
S40 | 40 | 10 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, T.N.K.; Kato, K.; Takano, K.; Fujioka, S.; Nakajima, M. Spectral Shape Control of Laser-Induced Terahertz Waves from Micro Split-Ring Resonators Made of Metallic Nanostructures. Photonics 2024, 11, 1209. https://doi.org/10.3390/photonics11121209
Phan TNK, Kato K, Takano K, Fujioka S, Nakajima M. Spectral Shape Control of Laser-Induced Terahertz Waves from Micro Split-Ring Resonators Made of Metallic Nanostructures. Photonics. 2024; 11(12):1209. https://doi.org/10.3390/photonics11121209
Chicago/Turabian StylePhan, Thanh Nhat Khoa, Kosaku Kato, Keisuke Takano, Shinsuke Fujioka, and Makoto Nakajima. 2024. "Spectral Shape Control of Laser-Induced Terahertz Waves from Micro Split-Ring Resonators Made of Metallic Nanostructures" Photonics 11, no. 12: 1209. https://doi.org/10.3390/photonics11121209
APA StylePhan, T. N. K., Kato, K., Takano, K., Fujioka, S., & Nakajima, M. (2024). Spectral Shape Control of Laser-Induced Terahertz Waves from Micro Split-Ring Resonators Made of Metallic Nanostructures. Photonics, 11(12), 1209. https://doi.org/10.3390/photonics11121209