Biaxial Gaussian Beams, Hermite–Gaussian Beams, and Laguerre–Gaussian Vortex Beams in Isotropy-Broken Materials
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Paraxial Equation and Biaxial Gaussian Beams in Isotropy-Broken Materials
3.2. Higher-Order Biaxial Hermite–Gaussian Beams in Isotropy-Broken Media
3.3. Laguerre–Gaussian Vortex Beams in Isotropy-Broken Media
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Durach, M. Theory of Refraction, Ray-Wave Tilt, Hidden Momentum, and Apparent Topological Phases in Isotropy-Broken Materials Based on Electromagnetism of Moving Media. Appl. Sci. 2024, 14, 6851. [Google Scholar] [CrossRef]
- Mackay, T.G.; Lakhtakia, A. Electromagnetic Anisotropy and Bianisotropy: A Field Guide; World Scientific: Singapore, 2010. [Google Scholar]
- Kamenetskii, E.O. Chirality, Magnetism and Magnetoelectricity; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Kamenetskii, E.O. Bianisotropics and electromagnetics. arXiv 2006, arXiv:cond-mat/0601467. [Google Scholar]
- Sihvola, A.; Semchenko, I.; Khakhomov, S. View on the history of electromagnetics of metamaterials: Evolution of the congress series of complex media. Photonics Nanostructures-Fundam. Appl. 2014, 12, 279–283. [Google Scholar] [CrossRef]
- Poleva, M.; Frizyuk, K.; Baryshnikova, K.; Evlyukhin, A.; Petrov, M.; Bogdanov, A. Multipolar theory of bianisotropic response of meta-atoms. Phys. Rev. B 2023, 107, L041304. [Google Scholar] [CrossRef]
- Simovski, C.; Tretyakov, S. An Introduction to Metamaterials and Nanophotonics; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Fleck, J.A., Jr.; Feit, M.D. Beam propagation in uniaxial anisotropic media. J. Opt. Soc. Am. 1983, 73, 920–926. [Google Scholar] [CrossRef]
- Seshadri, S.R. Basic elliptical Gaussian wave and beam in a uniaxial crystal. JOSA A 2003, 20, 1818–1826. [Google Scholar] [CrossRef]
- Alekseyev, L.V.; Narimanov, E. Slow light and 3D imaging with non-magnetic negative index systems. Opt. Express 2006, 14, 11184–11193. [Google Scholar] [CrossRef]
- Macêdo, R.; Dumelow, T. Tunable all-angle negative refraction using antiferromagnets. Phys. Rev. B 2014, 89, 035135. [Google Scholar] [CrossRef]
- Fresnel, A. Second supplément au mémoire sur la double refraction. In Œuvres 2; Gallimard: Paris, France, 1822; pp. 369–442. [Google Scholar]
- Banerjee, P.; Nehmetallah, G. Linear and nonlinear propagation in negative index materials. JOSA B 2006, 23, 2348–2355. [Google Scholar] [CrossRef]
- Thongrattanasiri, S.; Podolskiy, V.A. Hypergratings: Nanophotonics in planar anisotropic metamaterials. Opt. Lett. 2009, 34, 890–892. [Google Scholar] [CrossRef]
- Potemkin, A.; Poddubny, A.; Belov, P.; Kivshar, Y. Green function for hyperbolic media. Phys. Rev. A 2012, 86, 023848. [Google Scholar] [CrossRef]
- Smith, D.R.; Schurig, D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 2003, 90, 077405. [Google Scholar] [CrossRef] [PubMed]
- Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 2013, 7, 948–957. [Google Scholar] [CrossRef]
- Shekhar, P.; Atkinson, J.; Jacob, Z. Hyperbolic metamaterials: Fundamentals and applications. Nano Converg. 2014, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Takayama, O.; Lavrinenko, A.V. Optics with hyperbolic materials. JOSA B 2019, 36, F38–F48. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, H.; Chen, H. Hyperbolic metamaterials: From dispersion manipulation to applications. J. Appl. Phys. 2020, 127, 071101. [Google Scholar] [CrossRef]
- Tuz, V.R.; Fedorin, I.V.; Fesenko, V.I. Bi-hyperbolic isofrequency surface in a magneticsemiconductor superlattice. Opt. Lett. 2017, 42, 4561. [Google Scholar] [CrossRef]
- Durach, M.; Williamson, R.F.; Laballe, M.; Mulkey, T. Tri- and tetrahyperbolic isofrequency topologies complete classification of bianisotropic materials. Appl. Sci. 2020, 10, 763. [Google Scholar] [CrossRef]
- Durach, M. Tetra-hyperbolic and tri-hyperbolic optical phases in anisotropic metamaterials without magnetoelectric coupling due to hybridization of plasmonic and magnetic Bloch high-k polaritons. Opt. Commun. 2020, 476, 126349. [Google Scholar] [CrossRef]
- Tuz, V.R.; Fesenko, V.I. Magnetically induced topological transitions of hyperbolic dispersion in biaxial gyrotropic media. J. Appl. Phys. 2020, 128, 013107. [Google Scholar] [CrossRef]
- Durach, M.; Williamson, R.; Adams, J.; Holtz, T.; Bhatt, P.; Moreno, R.; Smith, F. On Fresnel-Airy Equations, Fabry-Perot Resonances and Surface Electromagnetic Waves in Arbitrary Bianisotropic Metamaterials. Prog. Electromagn. Res. 2022, 173, 53–69. [Google Scholar] [CrossRef]
- Allen, L.; Barnett, S.; Padgett, M. Optical Angular Momentum; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Bekshaev, A.; Soskin, M.; Vasnetsov, M. Paraxial Light Beams with Angular Momentum; Nova Science Publishers: Hauppauge, NY, USA, 2008. [Google Scholar]
- Bliokh, K.Y.; Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 2015, 592, 1–38. [Google Scholar] [CrossRef]
- Bliokh, K.; Rodríguez-Fortuño, F.; Nori, F.; Zayats, A.V. Spin-orbit interactions of light. Nat. Photonics 2015, 9, 796–808. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media; Theoretical Physics; Fizmatlit: Moscow, Russia, 2005; Volume 8. [Google Scholar]
- Guan, M.; Chen, D.; Hu, S.; Zhao, H.; You, P.; Meng, S. Theoretical insights into ultrafast dynamics in quantum materials. Ultrafast Sci. 2022, 2022, 9767251. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Chen, Y.; Xia, T.; Wang, L.; Han, B.; He, F.; Sheng, Z.; Zhang, J. Bessel terahertz pulses from superluminal laser plasma filaments. Ultrafast Sci. 2022, 2022, 9870325. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Han, Y.; Chen, E.; Guo, P.; Zhang, W.; An, M.; Pan, Z.; Xu, Q.; Guo, X.; et al. High-performance γ-MnO2 dual-core, pair-hole fiber for ultrafast photonics. Ultrafast Sci. 2023, 3, 0006. [Google Scholar] [CrossRef]
- Hadad, Y.; Melamed, T. Non-orthogonal domain parabolic equation and its tilted Gaussian beam solutions. IEEE Trans. Antennas Propag. 2010, 58, 1164. [Google Scholar] [CrossRef]
- Plachenov, A.B.; Chamorro-Posada, P.; Kiselev, A.P. Nonparaxial tilted waveobjects. J. Light. Technol. 2023, 41, 2212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durach, M. Biaxial Gaussian Beams, Hermite–Gaussian Beams, and Laguerre–Gaussian Vortex Beams in Isotropy-Broken Materials. Photonics 2024, 11, 1062. https://doi.org/10.3390/photonics11111062
Durach M. Biaxial Gaussian Beams, Hermite–Gaussian Beams, and Laguerre–Gaussian Vortex Beams in Isotropy-Broken Materials. Photonics. 2024; 11(11):1062. https://doi.org/10.3390/photonics11111062
Chicago/Turabian StyleDurach, Maxim. 2024. "Biaxial Gaussian Beams, Hermite–Gaussian Beams, and Laguerre–Gaussian Vortex Beams in Isotropy-Broken Materials" Photonics 11, no. 11: 1062. https://doi.org/10.3390/photonics11111062
APA StyleDurach, M. (2024). Biaxial Gaussian Beams, Hermite–Gaussian Beams, and Laguerre–Gaussian Vortex Beams in Isotropy-Broken Materials. Photonics, 11(11), 1062. https://doi.org/10.3390/photonics11111062