Orthogonal Frequency Division Diversity and Multiplexing for 6G OWC: Principle and Underwater Use Case
Abstract
1. Introduction
1.1. Related Work and Motivation
1.2. Main Contributions
- The proposal of a novel OFDDM scheme for bandlimited UOWC systems, which can efficiently support a flexible trade-off between BER and capacity so as to adapt to various underwater transmission conditions.
- The utilization of subblock interleaving in OFDDM to effectively mitigate the adverse low-pass effect in bandlimited UOWC systems and, hence, extend the effective modulation bandwidth of the system.
- The design of low-complexity, channel-based diversity-combining approaches to reduce the receiver’s computational complexity using low-pass channel response estimation, instead of received SNR estimation.
- An evaluation and comparative analysis of the proposed OFDDM scheme against conventional OFDM in various UOWC scenarios via both simulations and experiments, demonstrating the superiority of the proposed scheme.
2. System Model
2.1. Principle of OFDDM
2.2. Subblock Interleaving
2.3. Low-Complexity Channel-Based Diversity Combining
2.3.1. Channel-Based SC
2.3.2. Channel-Based MRC
3. Results and Discussions
3.1. Simulation Results
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the road to 6G: Visions, requirements, key technologies, and testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [Google Scholar] [CrossRef]
- Singh, P.; Bohara, V.A.; Srivastava, A. On the optimization of integrated terrestrial-air-underwater architecture using optical wireless communication for future 6G network. IEEE Photonics J. 2022, 14, 1–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Li, X.; Gui, L.; Xia, Y.; Lang, L. Demonstration of a real-time UWOC system using a bandwidth limited LED based on hardware and software equalization. J. Light. Technol. 2023, 41, 4979–4988. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Xu, J. Underwater wireless optical communication: Why, what, and how? [Invited]. Chin. Opt. Lett. 2019, 17, 34–43. [Google Scholar] [CrossRef]
- Diamant, R.; Campagnaro, F.; de Filippo de Grazia, M.; Casari, P.; Testolin, A.; Sanjuan Calzado, V.; Zorzi, M. On the relationship between the underwater acoustic and optical channels. IEEE Trans. Wirel. Commun. 2017, 16, 8037–8051. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Li, Y.; Yin, H.; Ji, X.; Wu, B. Design and implementation of underwater wireless optical communication system with high-speed and full-duplex using blue/green light. In Proceedings of the International Conference on Communication Software and Networks (ICCSN), Chengdu, China, 6–9 July 2018; pp. 99–103. [Google Scholar]
- Elamassie, M.; Miramirkhani, F.; Uysal, M. Performance characterization of underwater visible light communication. IEEE Trans. Commun. 2019, 67, 543–552. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Deng, B.; Wang, Z.; Liu, M.; Fu, H.Y. Enhancing underwater VLC with spatial division transmission and pairwise coding. Opt. Express 2023, 31, 16812–16832. [Google Scholar] [CrossRef]
- Jiang, H.; Qiu, H.; He, N.; Popoola, W.; Ahmad, Z.; Rajbhandari, S. Ergodic capacity and error performance of spatial diversity UWOC systems over generalized gamma turbulence channels. Opt. Commun. 2022, 505, 127476. [Google Scholar] [CrossRef]
- Sabeer, S.; Hassib, M.D.; Jameel, Z.N. A review: Error correcting codes for efficient underwater optical communication MIMO system. In Proceedings of the International Conference on Communication and Information Technologies (IICCIT), Basrah, Iraq, 7–8 September 2022; pp. 13–19. [Google Scholar]
- Kurnia, R. Hamming coding for multi-relay cooperative quantize and forward networks. In Proceedings of the IEEE Region 10 Symposium (TENSYMP), Bali, Indonesia, 9–11 May 2016; pp. 321–325. [Google Scholar]
- Cai, Y.; Wang, W.; Qian, W.; Xing, J.; Tao, K.; Yin, J.; Zhang, S.; Lei, M.; Sun, E.; Chien, H.C.; et al. FPGA investigation on error-flare performance of a concatenated staircase and Hamming FEC code for 400G inter-data center interconnect. J. Light. Technol. 2019, 37, 188–195. [Google Scholar] [CrossRef]
- Sybis, M.; Wesolowski, K.; Jayasinghe, K.; Venkatasubramanian, V.; Vukadinovic, V. Channel coding for ultra-reliable low-latency communication in 5G systems. In Proceedings of the IEEE 84th Vehicular Technology Conference (VTC-Fall), Montréal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar]
- Rani, M.; Singal, P. An efficient IDMA-OFDM underwater wireless communication with Reed Solomon and Hamming code. J. Opt. 2022, 51, 456–466. [Google Scholar] [CrossRef]
- Deng, B.; Wang, J.; Wang, Z.; Qasem, Z.A.H.; Li, Q.; Tang, X.; Chen, C.; Fu, H.Y. Polarization multiplexing based UOWC systems under bubble turbulence. J. Light. Technol. 2023, 41, 5588–5598. [Google Scholar] [CrossRef]
- He, J.; Xu, L.; He, J.; Xiao, Y. Performance comparison of different rotated QAM based DMT schemes in underwater optical wireless communication. J. Light. Technol. 2023, 41, 610–617. [Google Scholar] [CrossRef]
- Huang, X.; Chen, S.; Wang, Z.; Shi, J.; Wang, Y.; Xiao, J.; Chi, N. 2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Zhang, Z.; Lai, Y.; Lv, J.; Liu, P.; Teng, D.; Wang, G.; Liu, L. Over 700 MHz –3 dB bandwidth UOWC system based on blue HV-LED with T-bridge pre-Equalizer. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.; Chi, N. Partial pruning strategy for a dual-branch multilayer perceptron-based post-equalizer in underwater visible light communication systems. Opt. Express 2020, 28, 15562–15572. [Google Scholar] [CrossRef]
- Chen, C.; Nie, Y.; Liu, M.; Du, Y.; Liu, R.; Wei, Z.; Fu, H.Y.; Zhu, B. Digital pre-equalization for OFDM-based VLC systems: Centralized or distributed? IEEE Photonics Technol. Lett. 2021, 33, 1081–1084. [Google Scholar] [CrossRef]
- Zhou, X.; Urata, R.; Liu, H. Beyond 1 Tb/s intra-data center interconnect technology: IM-DD or coherent? J. Light. Technol. 2020, 38, 475–484. [Google Scholar] [CrossRef]
- Popoola, W.O.; Ghassemlooy, Z. BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. J. Light. Technol. 2009, 27, 967–973. [Google Scholar] [CrossRef]
- Bekkali, A.; Naila, C.B.; Kazaura, K.; Wakamori, K.; Matsumoto, M. Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma–Gamma distribution. IEEE Photonics J. 2010, 2, 510–520. [Google Scholar] [CrossRef]
- Hessien, S.; Tokgöz, S.C.; Anous, N.; Boyacı, A.; Abdallah, M.; Qaraqe, K.A. Experimental evaluation of OFDM-based underwater visible light communication system. IEEE Photonics J. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Jiang, H.; Qiu, H.; He, N.; Popoola, W.; Ahmad, Z.; Rajbhandari, S. Performance of spatial diversity DCO-OFDM in a weak turbulence underwater visible light communication channel. J. Light. Technol. 2020, 38, 2271–2277. [Google Scholar] [CrossRef]
- Hong, Y.; Wu, T.; Chen, L.K. On the performance of adaptive MIMO-OFDM indoor visible light communications. IEEE Photonics Technol. Lett. 2016, 28, 907–910. [Google Scholar] [CrossRef]
- Başar, E.; Panayırcı, E. Optical OFDM with index modulation for visible light communications. In Proceedings of the International Workshop on Optical Wireless Communications (IWOW), Istanbul, Turkey, 7–8 September 2015; pp. 11–15. [Google Scholar]
- Jaradat, A.M.; Hamamreh, J.M.; Arslan, H. OFDM with subcarrier number modulation. IEEE Wirel. Commun. Lett. 2018, 7, 914–917. [Google Scholar] [CrossRef]
- Wen, M.; Li, J.; Dang, S.; Li, Q.; Mumtaz, S.; Arslan, H. Joint-mapping orthogonal frequency division multiplexing with subcarrier number modulation. IEEE Trans. Commun. 2021, 69, 4306–4318. [Google Scholar] [CrossRef]
- Chen, J.; Deng, B.; Chen, C.; Liu, M.; Fu, H.Y.; Haas, H. Efficient capacity enhancement using OFDM with interleaved subcarrier number modulation in bandlimited UOWC systems. Opt. Express 2023, 31, 30723–30734. [Google Scholar] [CrossRef]
- Chun, H.; Gomez, A.; Faulkner, G.; O’Brien, D. A spectrally efficient equalization technique for optical sources with direct modulation. Opt. Lett. 2018, 43, 2708–2711. [Google Scholar] [CrossRef]
- Brennan, D. Linear diversity combining techniques. Proc. IEEE 2003, 91, 331–356. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.D.; Yang, H.; Zhang, S.; Du, P. Reduction of SINR fluctuation in indoor multi-cell VLC systems using optimized angle diversity receiver. J. Light. Technol. 2018, 36, 3603–3610. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.D.; Wu, D.; Ghassemlooy, Z. Wide-FOV and high-gain imaging angle diversity receiver for indoor SDM-VLC systems. IEEE Photon. Technol. Lett. 2016, 28, 2078–2081. [Google Scholar] [CrossRef]
- Qian, Y.; Chen, C.; Du, P.; Liu, M. Hybrid space division multiple access and quasi-orthogonal multiple access for multi-user underwater visible light communication. IEEE Photonics J. 2023, 15, 7303507. [Google Scholar] [CrossRef]
- Yin, H.; Alamouti, S. OFDMA: A broadband wireless access technology. In Proceedings of the IEEE Sarnoff Symposium, Princeton, NJ, USA, 27–28 March 2006; pp. 1–4. [Google Scholar]
- Nie, Y.; Chen, J.; Wen, W.; Liu, M.; Deng, X.; Chen, C. Orthogonal subblock division multiple access for OFDM-IM-based multi-user VLC systems. Photonics 2022, 9, 373. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Chen, C.; Zeng, Z.; Liu, M.; Ye, J.; He, C.; Huang, S.; Fu, H.Y.; Haas, H. Orthogonal Frequency Division Diversity and Multiplexing for 6G OWC: Principle and Underwater Use Case. Photonics 2024, 11, 1051. https://doi.org/10.3390/photonics11111051
Chen J, Chen C, Zeng Z, Liu M, Ye J, He C, Huang S, Fu HY, Haas H. Orthogonal Frequency Division Diversity and Multiplexing for 6G OWC: Principle and Underwater Use Case. Photonics. 2024; 11(11):1051. https://doi.org/10.3390/photonics11111051
Chicago/Turabian StyleChen, Jiamin, Chen Chen, Zhihong Zeng, Min Liu, Jia Ye, Cuiwei He, Shenjie Huang, H. Y. Fu, and Harald Haas. 2024. "Orthogonal Frequency Division Diversity and Multiplexing for 6G OWC: Principle and Underwater Use Case" Photonics 11, no. 11: 1051. https://doi.org/10.3390/photonics11111051
APA StyleChen, J., Chen, C., Zeng, Z., Liu, M., Ye, J., He, C., Huang, S., Fu, H. Y., & Haas, H. (2024). Orthogonal Frequency Division Diversity and Multiplexing for 6G OWC: Principle and Underwater Use Case. Photonics, 11(11), 1051. https://doi.org/10.3390/photonics11111051