A Comprehensive Exploration of Contemporary Photonic Devices in Space Exploration: A Review
Abstract
:1. Introduction
2. Space Exploration Investment
3. Operation in an Extreme Space Environment
4. Widely Researched Photonic Devices for Space Applications
4.1. Photodetectors
4.2. Light-Emitting Diodes (LEDs) and Lasers
4.3. Optical Sensors, Fiber Optic Systems, and Modulators
4.4. Telescopes and Imaging Devices
4.5. Optical Filters and Coatings
4.6. Solar Cells
- (a)
- Silicon Cells Covered in Thin Glass: Silicon cells coated with thin glass resemble conventional solar panels but are specially enhanced to withstand radiation and extreme temperatures. These panels, akin to those on the ISS, hold most solar panels in space [151].
- (b)
- Multi-Junction Cells (Gallium Arsenide and Similar Materials): Multi-junction cells, composed of materials like gallium arsenide, offer increased efficiency [152,153]. They are preferred when limited physical space is a concern, boasting up to 34% efficiency compared to the 15–20% range of most commercial solar panels. Satellites equipped with these cells can dynamically orient their solar panels to optimize sunlight absorption, as space lacks atmospheric interference, resulting in a higher abundance of solar rays. Gallium arsenide panels, being more efficient, are advantageous for spacecraft where space is at a premium [154,155,156]. Many satellites incorporate folding structures allowing the panels to expand in orbit, a feature also seen in the ISS.
5. Challenges Related to the Development of Photonic Components for Space Applications
6. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, C.-Y.; Yiu, G.-Z.; Chang, Y.-C. Free-Space Applications of Silicon Photonics: A Review. Micromachines 2022, 13, 990. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Liu, W.; Xu, S.; Zhou, J.; Ren, Z.; Lee, C. Recent Progress in Silicon-Based Photonic Integrated Circuits and Emerging Applications. Adv. Opt. Mater. 2023, 11, 2301028. [Google Scholar] [CrossRef]
- Taylor, E.W. Inorganic and polymer photonic sensor technologies in space missions. In Proceedings of the IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188), Budapest, Hungary, 21–23 May 2001; Volume 3, pp. 2006–2013. [Google Scholar]
- Najeeb, N.; Ménard, M. Silicon Photonic Modulators for Space Applications. In Proceedings of the OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) (2020), Paper SpM3I.5, Washington, DC, USA, 13–16 July 2020; p. SpM3I.5. [Google Scholar]
- Chandrasekar, R.; Lapin, Z.J.; Nichols, A.S.; Braun, R.M.; Fountain, A.W., III. Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: State-of-the-art and future outlooks. Opt. Eng. 2019, 58, 020901. [Google Scholar] [CrossRef]
- Dell’Olio, F.; Tatoli, T.; Ciminelli, C.; Armenise, M.N. Recent advances in miniaturized optical gyroscopes. J. Eur. Opt. Soc.-Rapid Publ. 2014, 9, 14013. [Google Scholar] [CrossRef]
- Photonics in Space; World Scientific: Singapore, 2016; Available online: https://www.worldscientific.com/worldscibooks/10.1142/9817#t=aboutBook (accessed on 14 September 2024).
- Bogdanov, S.; Shalaginov, M.Y.; Boltasseva, A.; Shalaev, V.M. Material Platforms for Integrated Quantum Photonics. Opt. Mater. Express 2017, 7, 111–132. [Google Scholar] [CrossRef]
- Mao, D.; Chang, L.; Lee, H.; Yu, A.W.; Maruca, B.A.; Ullah, K.; Matthaeus, W.H.; Krainak, M.A.; Dong, P.; Gu, T. Space-qualifying silicon photonic modulators and circuits. Sci. Adv. 2024, 10, eadi9171. [Google Scholar] [CrossRef]
- Butt, M.A. Integrated Optics: Platforms and Fabrication Methods. Encyclopedia 2023, 3, 824–838. [Google Scholar] [CrossRef]
- Xiang, C.; Jin, W.; Bowers, J.E. Silicon nitride passive and active photonic integrated circuits: Trends and prospects. Photonics Res. 2022, 10, A82–A96. [Google Scholar] [CrossRef]
- Muñoz, P.; Doménech, J.D.; Domínguez, C.; Sánchez, A.; Micó, G.; Bru, L.A.; Pérez, D.; Pastor, D. State of the art of Silicon Nitride photonics integration platforms. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017; pp. 1–4. [Google Scholar]
- Butt, M.A.; Kozłowski, Ł.; Golas, M.; Slowikowski, M.; Filipiak, M.; Juchniewicz, M.; Bieniek-Kaczorek, A.; Dudek, M.; Piramidowicz, R. Numerical and Experimental Demonstration of a Silicon Nitride-Based Ring Resonator Structure for Refractive Index Sensing. Appl. Sci. 2024, 14, 6082. [Google Scholar] [CrossRef]
- Klamkin, J.; Zhao, H.; Song, B.; Liu, Y.; Isaac, B.; Pinna, S.; Sang, F.; Coldren, L. Indium Phosphide Photonic Integrated Circuits: Technology and Applications. In Proceedings of the 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), San Diego, CA, USA, 15–17 October 2018; pp. 8–13. [Google Scholar]
- Mathur, A. High-power indium phosphide semiconductor lasers. In Proceedings of the LEOS 2000. 2000 IEEE Annual Meeting Conference Proceedings. 13th Annual Meeting. IEEE Lasers and Electro-Optics Society 2000 Annual Meeting (Cat. No.00CH37080), Rio Grande, PR, USA, 13–16 November 2000; Available online: https://ieeexplore.ieee.org/document/893936 (accessed on 20 June 2024).
- Xu, M.; He, M.; Zhang, H.; Jian, J.; Pan, Y.; Liu, X.; Chen, L.; Meng, X.; Chen, H.; Li, Z.; et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 2020, 11, 3911. [Google Scholar] [CrossRef]
- Guarino, A.; Poberaj, G.; Rezzonico, D.; Degl’Innocenti, R.; Günter, P. Electro–optically tunable microring resonators in lithium niobate. Nat. Photonics 2007, 1, 407–410. [Google Scholar] [CrossRef]
- Patel, P. Materials for Space Exploration Take a Giant Leap. ACS Cent. Sci. 2023, 9, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Gholipour, B.; Youngblood, N.; Wang, Q.; Wu, P.C.; Barclay, P.; Ou, J.Y. Reconfigurable photonic platforms: Feature issue introduction. Opt. Mater. Express 2024, 14, 236–239. [Google Scholar] [CrossRef]
- Ge, S.; Sang, D.; Zou, L.; Yao, Y.; Zhou, C.; Fu, H.; Xi, H.; Fan, J.; Meng, L.; Wang, C. A Review on the Progress of Optoelectronic Devices Based on TiO2 Thin Films and Nanomaterials. Nanomaterials 2023, 13, 1141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shao, J.; Yan, C.; Qin, R.; Lu, Z.; Geng, H.; Xu, T.; Ju, L. A review on optoelectronic device applications of 2D transition metal carbides and nitrides. Mater. Des. 2021, 200, 109452. [Google Scholar] [CrossRef]
- Treichel, T.H. Human Factor Evaluation of LED General Luminaire Assemblies for Spacecraft Lighting. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–12. [Google Scholar]
- Letson, B.C.; Barke, S.; Wass, P.; Mueller, G.; Ren, F.; Pearton, S.J.; Conklin, J.W. Deep UV AlGaN LED reliability for long duration space missions. J. Vac. Sci. Technol. A 2022, 41, 013202. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, G. Flexible optoelectronic sensors: Status and prospects. Mater. Chem. Front. 2023, 7, 1496–1519. [Google Scholar] [CrossRef]
- Ko, H.C.; Stoykovich, M.P.; Song, J.; Malyarchuk, V.; Choi, W.M.; Yu, C.-J.; Geddes, J.B., III; Xiao, J.; Wang, S.; Huang, Y.; et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753. [Google Scholar] [CrossRef]
- Abduraimov, E.K.; Khalmanov, D.K.; Nurmatov, B.A.; Dusmukhamedova, S.A.; Khamidova, N.E. Theoretical research and development optoelectronic communication devices. J. Phys. Conf. Ser. 2020, 1515, 022055. [Google Scholar] [CrossRef]
- Sumanth, A.; Ganapathi, K.L.; Rao, M.S.R.; Dixit, T. A review on realizing the modern optoelectronic applications through persistent photoconductivity. J. Phys. Appl. Phys. 2022, 55, 393001. [Google Scholar] [CrossRef]
- Schauer, A. State of the art and new developments in optoelectronic displays. Displays 1980, 2, 16–28. [Google Scholar] [CrossRef]
- Bielecki, Z.; Stacewicz, T.; Wojtas, J.; Mikołajczyk, J.; Szabra, D.; Prokopiuk, A. Selected optoelectronic sensors in medical applications. Opto-Electron. Rev. 2018, 26, 122–133. [Google Scholar] [CrossRef]
- Wu, J.; Chen, S.; Seeds, A.; Liu, H. Quantum dot optoelectronic devices: Lasers, photodetectors and solar cells. J. Phys. D Appl. Phys. 2015, 48, 363001. [Google Scholar] [CrossRef]
- VanSant, K.T.; Kirmani, A.R.; Patel, J.B.; Crowe, L.E.; Ostrowski, D.P.; Wieliczka, B.M.; McGehee, M.D.; Schelhas, L.T.; Luther, J.M.; Peshek, T.J.; et al. Combined Stress Testing of Perovskite Solar Cells for Stable Operation in Space. ACS Appl. Energy Mater. 2023, 6, 10319–10326. [Google Scholar] [CrossRef]
- Varghese, J.C. Is Space-Based Solar Power Our Future? 2024. Available online: https://www.greenmatch.co.uk/blog/2020/02/space-based-solar-power (accessed on 22 May 2024).
- Space-Based Solar Power: A Skeptic’s Take—IEEE Spectrum. Available online: https://spectrum.ieee.org/space-based-solar-power-2667878868 (accessed on 22 May 2024).
- Barra, G.; Guadagno, L.; Raimondo, M.; Santonicola, M.G.; Toto, E.; Vecchio Ciprioti, S. A Comprehensive Review on the Thermal Stability Assessment of Polymers and Composites for Aeronautics and Space Applications. Polymers 2023, 15, 3786. [Google Scholar] [CrossRef]
- Balint, T.S.; Cutts, J.A.; Kolawa, E.A.; Peterson, C.E. Extreme environment technologies for space and terrestrial applications. In SPIE Defense and Security Symposium; SPIE: Orlando, FL, USA, 2008; Volume 6960, pp. 36–47. [Google Scholar]
- Banken, E.; Oeffner, J. Biomimetics for innovative and future-oriented space applications—A review. Front. Space Technol. 2023, 3, 105054. [Google Scholar] [CrossRef]
- Le Roy, B.; Martin-Krumm, C.; Pinol, N.; Dutheil, F.; Trousselard, M. Human challenges to adaptation to extreme professional environments: A systematic review. Neurosci. Biobehav. Rev. 2023, 146, 105054. [Google Scholar] [CrossRef]
- Bidkar, R. Space Based Solar Power (SBSP): An emerging technology. In Proceedings of the 2012 IEEE 5th India International Conference on Power Electronics (IICPE), Delhi, India, 6–8 December 2012; pp. 1–4. [Google Scholar]
- Search|T2 Portal. Available online: https://technology.nasa.gov/tags/semiconductors (accessed on 22 May 2024).
- Li, J.; Aierken, A.; Liu, Y.; Zhuang, Y.; Yang, X.; Mo, J.H.; Fan, R.K.; Chen, Q.Y.; Zhang, S.Y.; Huang, Y.M.; et al. A Brief Review of High Efficiency III-V Solar Cells for Space Application. Front. Phys. 2021, 8, 631925. [Google Scholar] [CrossRef]
- Gu, T.; Prather, D.W. Space test of photonic integrated materials and devices. In Proceedings of the 2021 IEEE Research and Applications of Photonics in Defense Conference (RAPID), Miramar Beach, FL, USA, 2–4 August 2021; p. 1. [Google Scholar]
- Klamkin, J.; Stephen, M. Integrated Photonics Technology for Space-Based Remote-Sensing. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September 2020–2 October 2020; pp. 3471–3474. [Google Scholar]
- Kim, H.J.; Julian, M.; Williams, C.; Bombara, D.; Hu, J.; Gu, T.; Aryana, K.; Sauti, G.; Humphreys, W. Versatile spaceborne photonics with chalcogenide phase-change materials. Npj Microgravity 2024, 10, 20. [Google Scholar] [CrossRef]
- Tzintzarov, G.N.; Rao, S.G.; Cressler, J.D. Integrated Silicon Photonics for Enabling Next-Generation Space Systems. Photonics 2021, 8, 131. [Google Scholar] [CrossRef]
- Schopp, N.; Abdikamalov, E.; Mostovyi, A.I.; Parkhomenko, H.P.; Solovan, M.M.; Asare, E.A.; Bazan, G.C.; Nguyen, T.-Q.; Smoot, G.F.; Brus, V.V. Interstellar photovoltaics. Sci. Rep. 2023, 13, 16114. [Google Scholar] [CrossRef] [PubMed]
- Marshall, P.W.; Dale, C.J.; Burke, E.A. Space radiation effects on optoelectronic materials and components for a 1300 nm fiber optic data bus. IEEE Trans. Nucl. Sci. 1992, 39, 1982–1989. [Google Scholar] [CrossRef]
- Research, T.M. Space Exploration Investment Drives Photonic Integrated Circuits Market to Reach US$ 98.7 Billion by 2031: TMR Study. Available online: https://www.globenewswire.com/news-release/2023/08/02/2716746/32656/en/Space-Exploration-Investment-Drives-Photonic-Integrated-Circuits-Market-to-Reach-US-98-7-Billion-by-2031-TMR-Study.html (accessed on 2 December 2023).
- Biasi, S.; Donati, G.; Lugnan, A.; Mancinelli, M.; Staffoli, E.; Pavesi, L. Photonic Neural Networks Based on Integrated Silicon Microresonators. Intell. Comput. 2024, 3, 0067. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Optical Computing: Status and Perspectives. Nanomaterials 2022, 12, 2171. [Google Scholar] [CrossRef]
- Carvalho, W.O.F.; Mejía-Salazar, J.R. Plasmonics for Telecommunications Applications. Sensors 2020, 20, 2488. [Google Scholar] [CrossRef] [PubMed]
- Zhirnov, A.A.; Chesnokov, G.Y.; Stepanov, K.V.; Gritsenko, T.V.; Khan, R.I.; Koshelev, K.I.; Chernutsky, A.O.; Svelto, C.; Pnev, A.B.; Valba, O.V. Fiber-Optic Telecommunication Network Wells Monitoring by Phase-Sensitive Optical Time-Domain Reflectometer with Disturbance Recognition. Sensors 2023, 23, 4978. [Google Scholar] [CrossRef]
- Photonics Elements for Sensing and Optical Conversions; Kazanskiy, N.L. (Ed.) CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-343916-5. [Google Scholar]
- Butt, M.A.; Piramidowicz, R. Integrated Photonic Sensors for the Detection of Toxic Gasses—A Review. Chemosensors 2024, 12, 143. [Google Scholar] [CrossRef]
- Guilhot, D.; Ribes-Pleguezuelo, P. Laser Technology in Photonic Applications for Space. Instruments 2019, 3, 50. [Google Scholar] [CrossRef]
- Ziari, M.; Joyner, C.; Melle, S.; Liou, C.; Nagarajan, R.; Sprage, T.; Chang, T.K.; Perkins, D.; Kish, F.; Welch, D. Photonic Integrated Circuit Enabled Bandwidth Virtualization. In Frontiers in Optics; Optica Publishing Group: Washington, DC, USA, 2008; p. FTuA4. Available online: https://opg.optica.org/viewmedia.cfm?r=1&seq=0&uri=fio-2008-FTuA4 (accessed on 14 September 2024).
- Agrawal, G.P.; Dutta, N.K. Photonic and Optoelectronic Integrated Circuits. In Semiconductor Lasers; Agrawal, G.P., Dutta, N.K., Eds.; Springer: Boston, MA, USA, 1993; pp. 530–546. ISBN 978-1-4613-0481-4. [Google Scholar]
- Doerr, C.R. Photonic Integrated Circuits for High-Speed Communications. In Proceedings of the Conference on Lasers and Electro-Optics 2010 (2010), Paper CFE3, San Jose, CA, USA, 16–21 May 2010; p. CFE3. [Google Scholar]
- Koren, U. Waveguide Based Photonic Integrated Circuits. In Optoelectronic Integration: Physics, Technology and Applications; Wada, O., Ed.; Springer: Boston, MA, USA, 1994; pp. 233–272. ISBN 978-1-4615-2686-5. [Google Scholar]
- Surviving Extreme Conditions in Space. Available online: https://www.esa.int/Science_Exploration/Space_Science/Extreme_space/Surviving_extreme_conditions_in_space (accessed on 8 December 2023).
- Azami, M.H.B.; Orger, N.C.; Schulz, V.H.; Oshiro, T.; Alarcon, J.R.C.; Maskey, A.; Nakayama, K.; Fukuda, Y.; Kojima, K.; Yamauchi, T.; et al. Design and environmental testing of imaging payload for a 6 U CubeSat at low Earth orbit: KITSUNE mission. Front. Space Technol. 2022, 3, 1000219. [Google Scholar] [CrossRef]
- Spacecraft in Extreme Environments. Available online: https://physicsworld.com/a/new-fuel-gauge-for-spacecraft-could-keep-satellites-active-for-longer/ (accessed on 8 December 2023).
- Zamani, M.; Jamali-Sheini, F.; Cheraghizade, M. Space-charge-limited current passivation of the self-powered and ultraviolet-to-visible range bilayer p-Si/n-Bi2S3 heterojunction photodetector by Ag coating. J. Alloys Compd. 2023, 933, 167665. [Google Scholar] [CrossRef]
- Mysoor, N.R.; Vang, T.A.; Forouhar, S.; Lin, L.Y.; Wu, M.C. High Power Photodetectors for Space Communications Applications. In Proceedings of the IEEE/LEOS 1995 Digest of the LEOS Summer Topical Meetings. Flat Panel Display Technology, Keystone, CO, USA, 7–9 August 1995; pp. 23–24. [Google Scholar]
- Jet Propulsion Laboratory Herschel Mission Home Page. Available online: https://herschel.jpl.nasa.gov/ (accessed on 2 December 2023).
- Cardimona, D.A.; Huang, D.H.; Cowan, V.; Morath, C. Infrared detectors for space applications. Infrared Phys. Technol. 2011, 54, 283–286. [Google Scholar] [CrossRef]
- Cho, H.H.; Lee, S.H.; Kim, D.; Yu, H.K.; Choi, J.-Y.; Park, J.-H. Fabrication of UV-C photodetector with ultimate stability in extreme space environments (radiation, low temperature) using aerosol-deposited Ga2O3. Ceram. Int. 2023, 49, 30375–30380. [Google Scholar] [CrossRef]
- Next-Generation Photodetector Camera to Deploy During Robotic Servicing Demonstration Mission—NASA. Available online: https://www.nasa.gov/technology/next-generation-photodetector-camera-to-deploy-during-robotic-servicing-demonstration-mission/ (accessed on 5 December 2023).
- Bae, Y.K. Photonic Laser Propulsion: Proof-of-Concept Demonstration. J. Spacecr. Rocket. 2008, 45, 153–155. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef]
- Marzioli, P.; Gianfermo, A.; Frezza, L.; Amadio, D.; Picci, N.; Curianò, F.; Pancalli, M.G.; Vestito, E.; Schachter, J.; Szczerba, M.; et al. Usage of Light Emitting Diodes (LEDs) for improved satellite tracking. Acta Astronaut. 2021, 179, 228–237. [Google Scholar] [CrossRef]
- Development and Testing of a LED-Based Optical Data Link for the LEDSAT CubeSat. Available online: https://iris.uniroma1.it/handle/11573/1638624# (accessed on 4 December 2023).
- Semiconductor Lasers for Free-Space Communication. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4913/0000/Semiconductor-lasers-for-free-space-communication/10.1117/12.482229.short (accessed on 28 November 2023).
- Perspective of Solar Pumping of Solid State Lasers for ESA Missions|Nebula Public Library. Available online: https://nebula.esa.int/content/perspective-solar-pumping-solid-state-lasers-esa-missions (accessed on 28 November 2023).
- Yadav, A.; Chichkov, N.B.; Avrutin, E.A.; Gorodetsky, A.; Rafailov, E.U. Edge Emitting Mode-Locked Quantum Dot Lasers. Prog. Quantum Electron. 2023, 87, 100451. [Google Scholar] [CrossRef]
- Liu, A.; Wolf, P.; Lott, J.A.; Bimberg, D. Vertical-Cavity Surface-Emitting Lasers for Data Communication and Sensing. Photonics Res. 2019, 7, 121–136. [Google Scholar] [CrossRef]
- Carson, R.F.; Taylor, E.W.; Paxton, A.H.; Schone, H.; Choquette, K.D.; Hou, H.Q.; Warren, M.E.; Lear, K.L. Surface-emitting laser technology and its application to the space radiation environment. In Advancement of Photonics for Space: A Critical Review; SPIE: Orlando, FL, USA, 1997; Volume 10288, pp. 126–156. [Google Scholar]
- LaForge, L.E.; Moreland, J.R.; Bryan, R.G.; Sami Fadali, M. Vertical cavity surface emitting lasers for spaceflight multi-processors. In Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2006; p. 19. [Google Scholar]
- Tate, I.K. CubeSats: Tiny, Versatile Spacecraft Explained (Infographic). Available online: https://www.space.com/29320-cubesats-spacecraft-tech-explained-infographic.html (accessed on 26 November 2023).
- Space, A. A Basic Guide to Nanosatellites. Alén Space. Available online: https://alen.space/basic-guide-nanosatellites/ (accessed on 26 November 2023).
- Britain Competes for the Launch of an Estimated 2000 Satellites by 2030. Available online: https://www.gov.uk/government/news/britain-competes-for-the-launch-of-an-estimated-2000-satellites-by-2030 (accessed on 26 November 2023).
- Karafolas, N.; Armengol, J.M.P.; Mckenzie, I. Introducing photonics in spacecraft engineering: ESA’s strategic approach. In Proceedings of the 2009 IEEE Aerospace conference, Big Sky, MT, USA, 7–14 March 2009; pp. 1–15. [Google Scholar]
- Smullin, L.D.; Fiocco, G. Optical Echoes from the Moon. Nature 1962, 194, 1267. [Google Scholar] [CrossRef]
- Overview of Space Qualified Solid State Lasers Development at NASA Goddard Space Flight Center. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7193/1/Overview-of-space-qualified-solid-state-lasers-development-at-NASA/10.1117/12.814954.short?SSO=1 (accessed on 26 November 2023).
- Mars Observer Laser Altimeter Investigation. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1943/1/Mars-Observer-laser-altimeter-investigation/10.1117/12.157137.short (accessed on 26 November 2023).
- ESA—A World First: Data Transmission between European Satellites Using Laser Light. Available online: https://www.esa.int/Applications/Connectivity_and_Secure_Communications/A_world_first_Data_transmission_between_European_satellites_using_laser_light (accessed on 26 November 2023).
- War of the Worlds: Curiosity Fires First Laser Shot on Mars. Available online: https://newatlas.com/curiosity-laser-firing/23761/ (accessed on 26 November 2023).
- Butt, M.A. Racetrack Ring Resonator-Based on Hybrid Plasmonic Waveguide for Refractive Index Sensing. Micromachines 2024, 15, 610. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator. Waves Random Complex Media 2020, 30, 292–299. [Google Scholar] [CrossRef]
- Brunetti, G.; McKenzie, I.; Dell’Olio, F.; Armenise, M.N.; Ciminelli, C. Measured Radiation Effects on InGaAsP/InP Ring Resonators for Space Applications. Opt. Express 2019, 27, 24434–24444. Available online: https://opg.optica.org/oe/fulltext.cfm?uri=oe-27-17-24434&id=416723 (accessed on 14 September 2024). [CrossRef]
- Bahadori, M.; Nikdast, M.; Rumley, S.; Dai, L.Y.; Janosik, N.; Van Vaerenbergh, T.; Gazman, A.; Cheng, Q.; Polster, R.; Bergman, K. Design Space Exploration of Microring Resonators in Silicon Photonic Interconnects: Impact of the Ring Curvature. J. Light. Technol. 2018, 36, 2767–2782. Available online: https://ieeexplore.ieee.org/document/8328825 (accessed on 14 September 2024). [CrossRef]
- Song, B.; Stagarescu, C.; Ristic, S.; Behfar, A.; Klamkin, J. 3D integrated hybrid silicon laser. Opt. Express 2016, 24, 10435–10444. [Google Scholar] [CrossRef] [PubMed]
- Coldrick, J.R. Optical sensors for spacecraft attitude determination. Opt. Laser Technol. 1972, 4, 129–141. [Google Scholar] [CrossRef]
- Dell’Olio, F.; Brunetti, G.; Conteduca, D.; Sasanelli, N.; Ciminelli, C.; Armenise, M.N. Planar photonic gyroscopes for satellite attitude control. In Proceedings of the 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Vieste, Italy, 15–16 June 2017; pp. 167–169. [Google Scholar]
- McKenzie, I.; Ibrahim, S.; Haddad, E.; Abad, S.; Hurni, A.; Cheng, L.K. Fiber Optic Sensing in Spacecraft Engineering: An Historical Perspective From the European Space Agency. Front. Phys. 2021, 9, 719441. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A. Optical Fibre-Based Sensors—An Assessment of Current Innovations. Biosensors 2023, 13, 835. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N.; Voronkov, G.S.; Grakhova, E.P.; Kutluyarov, R.V. A Review on Photonic Sensing Technologies: Status and Outlook. Biosensors 2023, 13, 568. [Google Scholar] [CrossRef]
- Straube, U.; Berger, T.; Dieckmann, M. The ESA Active Dosimeter (EAD) system onboard the International Space Station (ISS). Z. Med. Phys. 2023, 34, 111–139. [Google Scholar] [CrossRef]
- Low-Mass Planar Photonic Imaging Sensor—NASA. Available online: https://www.nasa.gov/general/low-mass-planar-photonic-imaging-sensor/ (accessed on 2 December 2023).
- Benea-Chelmus, I.-C.; Mason, S.; Meretska, M.L.; Elder, D.L.; Kazakov, D.; Shams-Ansari, A.; Dalton, L.R.; Capasso, F. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat. Commun. 2022, 13, 3170. [Google Scholar] [CrossRef]
- Sakuma, T.; Yokoyama, S.; Fujikata, J. High Performance Si and InP/EO Polymer Hybrid Optical Modulators for Data Communication and Computing. In Proceedings of the 2022 Conference on Lasers and Electro-Optics Pacific Rim (2022), Paper CWP12A_02, Sapporo, Japan, 31 August–5 September 2022; p. CWP12A_02. [Google Scholar]
- Guo, M.; Wang, Y.; Yao, Y.; Duan, S.; Zhang, H.; Lin, W.; Liu, B. Experimental demonstration of SNSPD-based free space optical communication with a high extinction ratio modulator. Opt. Commun. 2024, 550, 129998. [Google Scholar] [CrossRef]
- Mesleh, R.; AL-Olaimat, A. Acousto-Optical Modulators for Free Space Optical Wireless Communication Systems. J. Opt. Commun. Netw. 2018, 10, 515–522. [Google Scholar] [CrossRef]
- Kernec, A.L.; Sotom, M.; Bénazet, B.; Barbero, J.; Peñate, L.; Maignan, M.; Esquivias, I.; Lopez, F.; Karafolas, N. Space evaluation of optical modulators for microwave photonic on-board applications. In Proceedings of the International Conference on Space Optics—ICSO 2010, Rhodes Island, Greece, 4–8 October 2010; Volume 10565, pp. 581–585. [Google Scholar]
- Park, R.S.; Riedel, J.E.; Ermakov, A.I.; Roa, J.; Castillo-Rogez, J.; Davies, A.G.; McEwen, A.S.; Watkins, M.M. Advanced Pointing Imaging Camera (APIC) for planetary science and mission opportunities. Planet. Space Sci. 2020, 194, 105095. [Google Scholar] [CrossRef]
- Sellier, C.; Gambart, D.; Perrot, N.; Garcia-Sanchez, E.; Virmontois, C.; Mouallem, W.; Bardoux, A. Development and qualification of a miniaturised CMOS camera for space applications (3DCM734/3DCM739). In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; Volume 11180, pp. 1134–1140. [Google Scholar]
- Brona, G.; Pochapskyi, D.; Przedpełski, T.; Karpińska, K.; Juszczyk, B.; Łukasiewicz, J.; Zienkiewicz, P.; Jamroży, M.; Czortek, N. An innovative sCMOS based autonomous astronomical camera dedicated to universal use for SST and other fields of optical astronomy. Int. J. Electron. Telecommun. 2024, 70, 261–266. [Google Scholar]
- Koekemoer, A.M.; Aussel, H.; Calzetti, D.; Capak, P.; Giavalisco, M.; Kneib, J.-P.; Leauthaud, A.; Fèvre, O.L.; McCracken, H.J.; Massey, R.; et al. The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing. Astrophys. J. Suppl. Ser. 2007, 172, 196. [Google Scholar] [CrossRef]
- Vishweshwar Rao, B.; Kiran, M.; Venkateswaran, R.; Sriram, K.V.; Narayanamurthy, C.S. Convex optical freeforms using fringe Zernike overlay approach for two-mirror and three-mirror telescopes for space applications. Opt. Commun. 2023, 541, 129533. [Google Scholar] [CrossRef]
- Chen, C.; Li, Z.; Yang, C.; Han, Z.; Jiang, X.; Liu, T.; Yuan, X.; Jiang, P.; Ji, T.; Yao, X.; et al. The Multi-band Survey Telescope at Zhongshan Station, Antarctica. Mon. Not. R. Astron. Soc. 2023, 520, 4601–4608. [Google Scholar] [CrossRef]
- Martin, S.R.; Lawrence, C.R.; Redding, D.C.; Mennesson, B.; Rodgers, J.M.; Hurd, K.; Morgan, R.M.; Hu, R.; Steeves, J.B.; Jewell, J.B.; et al. Next-generation active telescope for space astronomy. J. Astron. Telesc. Instrum. Syst. 2022, 8, 044005. [Google Scholar] [CrossRef]
- Usik, A.A.; Konyakhin, I.A. Study of a multi-array optoelectronic system for monitoring the elements of the Suffa RT-70 radio telescope. J. Opt. Technol. 2013, 80, 769–771. [Google Scholar] [CrossRef]
- Hubble Home|HubbleSite. Available online: https://hubblesite.org/home (accessed on 28 November 2023).
- Kim, M.; Barth, A.J.; Ho, L.C.; Son, S. A Hubble Space Telescope Imaging Survey of Low-redshift Swift-BAT Active Galaxies*. Astrophys. J. Suppl. Ser. 2021, 256, 40. [Google Scholar] [CrossRef]
- Webb Home. Available online: https://webbtelescope.org/home (accessed on 28 November 2023).
- Howell, E.; Dobrijevic, D. James Webb Space Telescope (JWST)—A Complete Guide. Available online: https://www.space.com/21925-james-webb-space-telescope-jwst.html (accessed on 28 November 2023).
- Vavryčuk, V. Cosmological Redshift and Cosmic Time Dilation in the FLRW Metric. Front. Phys. 2022, 10, 826188. [Google Scholar] [CrossRef]
- The Telescope. Available online: https://hubblesite.org/home/mission-and-telescope/the-telescope (accessed on 28 November 2023).
- James Webb Space Telescope—NASA Science. Available online: https://science.nasa.gov/mission/webb/ (accessed on 28 November 2023).
- di Toma, A.; Brunetti, G.; Saha, N.; Ciminelli, C. Fully Reconfigurable Photonic Filter for Flexible Payloads. Appl. Sci. 2024, 14, 488. [Google Scholar] [CrossRef]
- Saha, N.; Brunetti, G.; Armenise, M.N.; Ciminelli, C. Tunable narrow band add-drop filter design based on apodized long period waveguide grating assisted co-directional coupler. Opt. Express 2022, 30, 28632–28646. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Choudhary, A.; Marpaung, D.; Eggleton, B.J. Integrated microwave photonic filters. Adv. Opt. Photonics 2020, 12, 485–555. [Google Scholar] [CrossRef]
- Liu, D.; Xu, H.; Tan, Y.; Shi, Y.; Dai, D. Silicon photonic filters. Microw. Opt. Technol. Lett. 2021, 63, 2252–2268. [Google Scholar] [CrossRef]
- Temperature Dependence. Available online: https://alluxa.com/optical-filter-specs/temperature-dependence/ (accessed on 19 August 2024).
- Begou, T.; Krol, H.; Hecquet, C.; Bondet, C.; Lumeau, J.; Grèzes-Besset, C.; Lequime, M. Optical filters for UV to near IR space applications. In Proceedings of the International Conference on Space Optics—ICSO 2014, La Caleta, Spain, 7–10 October 2014; Volume 10563, pp. 42–48. [Google Scholar]
- Wray, P.R.; Paul, E.G.; Atwater, H.A. Optical filters made from random metasurfaces using Bayesian optimization. Nanophotonics 2024, 13, 183–193. [Google Scholar] [CrossRef]
- Vargas-Rodriguez, E.; Guzman-Chavez, A.D.; Garcia-Ramirez, M.A. Tunable Optical Filter Based on Two Thermal Sensitive Layers. IEEE Photonics Technol. Lett. 2018, 30, 1776–1779. [Google Scholar] [CrossRef]
- Saha, N.; Brunetti, G.; di Toma, A.; Armenise, M.N.; Ciminelli, C. Silicon Photonic Filters: A Pathway from Basics to Applications. Adv. Photonics Res. 2024, 2300343. [Google Scholar] [CrossRef]
- Stolov, A.A.; Wrubel, J.A.; Li, J.; Hines, M.J. Coatings for Harsh Environment Applications of Optical Fibers. In Proceedings of the Workshop on Specialty Optical Fibers and Their Applications (2015), Paper WF4A.3, Hong Kong, China, 4–6 November 2015; p. WF4A.3. [Google Scholar]
- Antireflection Coatings For Space Applications. Available online: https://www.photonicsonline.com/doc/antireflection-coatings-for-space-applications-0001 (accessed on 30 November 2023).
- Ji, C.; Liu, W.; Bao, Y.; Chen, X.; Yang, G.; Wei, B.; Yang, F.; Wang, X. Recent Applications of Antireflection Coatings in Solar Cells. Photonics 2022, 9, 906. [Google Scholar] [CrossRef]
- Protective Coatings for Space Applications—Zucconi—Major Reference Works—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781118097298.weoc207 (accessed on 30 November 2023).
- Tennyson, R.C. Protective coatings for spacecraft materials. Surf. Coat. Technol. 1994, 68–69, 519–527. [Google Scholar] [CrossRef]
- Nazemosadat, E.; Gasulla, I. Reconfigurable Few-Mode Fiber-Based Microwave Photonic Filter. J. Light. Technol. 2022, 40, 6417–6422. [Google Scholar] [CrossRef]
- French, P.; Krijnen, G.; Roozeboom, F. Precision in harsh environments. Microsyst. Nanoeng. 2016, 2, 16048. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Mouele, E.S.M.; Parau, A.C.; Vladescu, A.; Petrik, L.F.; Braic, M. Enhancement of the Corrosion Resistance of 304 Stainless Steel by Cr–N and Cr(N,O) Coatings. Coatings 2018, 8, 132. [Google Scholar] [CrossRef]
- Korhonen, H.; Syväluoto, A.; Leskinen, J.T.; Lappalainen, R. Optically transparent and durable Al2O3 coatings for harsh environments by ultra short pulsed laser deposition. Opt. Laser Technol. 2018, 98, 373–384. [Google Scholar] [CrossRef]
- Durnez, C.; Virmontois, C.; Panuel, P.; Antonsanti, A.; Goiffon, V.; Estribeau, M.; Saint-Pé, O.; Lalucaa, V.; Berdin, E.; Larnaudie, F.; et al. Evaluation of Microlenses, Color Filters, and Polarizing Filters in CIS for Space Applications. Sensors 2023, 23, 5884. [Google Scholar] [CrossRef]
- Blue, M.D.; Roberts, D.W. Effects of space exposure on optical filters. Appl. Opt. 1992, 31, 5299–5304. [Google Scholar] [CrossRef]
- LLNL Engineers Deliver Final Optical Components for World’s Newest Telescope: The Vera C. Rubin Observatory|Lawrence Livermore National Laboratory. Available online: https://www.llnl.gov/article/48111/llnl-engineers-deliver-final-optical-components-worlds-newest-telescope-vera-c-rubin (accessed on 4 December 2023).
- Ali, K.; Bano, S.S.; Khan, H.M.; Sharma, S.K. Solar Cells and Optoelectronic Devices in Space. In Solar Cells; Sharma, S., Ali, K., Eds.; Springer: Cham, Switzerland, 2020; Available online: https://link.springer.com/chapter/10.1007/978-3-030-36354-3_12 (accessed on 26 November 2023).
- Zhang, S.; Zhou, Y.; Cai, S. Fractional-Order PD Attitude Control for a Type of Spacecraft with Flexible Appendages. Fractal Fract. 2022, 6, 601. [Google Scholar] [CrossRef]
- Juneja, S.; Pavelyev, V.S.; Khonina, S.N.; Kumar, S. Fabrication of innovative diffraction gratings for light absorption enhancement in silicon thin films for solar cell application. J. Opt. 2023, 52, 1758–1774. [Google Scholar] [CrossRef]
- Juneja, S.; Verma, P.; Savelyev, D.A.; Khonina, S.N.; Sudhakar, S.; Kumar, S. Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications. AIP Conf. Proc. 2016, 1724, 020016. [Google Scholar] [CrossRef]
- Juneja, S.; Sudhakar, S.; Khonina, S.N.; Skidanov, R.V.; Porfirevb, A.P.; Moissev, O.Y.; Kazanskiy, N.L.; Kumar, S. Nanocrystalline silicon thin films and grating structures for solar cells. In Optical Technologies for Telecommunications 2015; SPIE: Orlando, FL, USA, 2016; Volume 9807, pp. 115–122. [Google Scholar]
- Flood, D.J. Space photovoltaics—History, progress and promise. Mod. Phys. Lett. B 2001, 15, 561–570. [Google Scholar] [CrossRef]
- Kuwano, Y.; Nakano, S.; Tsuda, S. Recent progress in Si thin film technology for solar cells. Vacuum 1991, 42, 1035–1036. [Google Scholar] [CrossRef]
- Razykov, T.M.; Ferekides, C.S.; Morel, D.; Stefanakos, E.; Ullal, H.S.; Upadhyaya, H.M. Solar photovoltaic electricity: Current status and future prospects. Sol. Energy 2011, 85, 1580–1608. [Google Scholar] [CrossRef]
- Schirone, L.; Ferrara, M.; Granello, P.; Paris, C.; Pellitteri, F. Power Bus Management Techniques for Space Missions in Low Earth Orbit. Energies 2021, 14, 7932. [Google Scholar] [CrossRef]
- Warmann, E.C.; Espinet-Gonzalez, P.; Vaidya, N.; Loke, S.; Naqavi, A.; Vinogradova, T.; Kelzenberg, M.; Leclerc, C.; Gdoutos, E.; Pellegrino, S.; et al. An ultralight concentrator photovoltaic system for space solar power harvesting. Acta Astronaut. 2020, 170, 443–451. [Google Scholar] [CrossRef]
- Dinçer, F. The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renew. Sustain. Energy Rev. 2011, 15, 713–720. [Google Scholar] [CrossRef]
- Verduci, R.; Romano, V.; Brunetti, G.; Yaghoobi Nia, N.; Di Carlo, A.; D’Angelo, G.; Ciminelli, C. Solar Energy in Space Applications: Review and Technology Perspectives. Adv. Energy Mater. 2022, 12, 2200125. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Lu, Y.; Wang, Z.; Liu, C.; Chen, Y.; He, H.; Shao, J. Thermal stability of triple-junction gallium arsenide cells. Opt. Express 2024, 32, 5220–5229. [Google Scholar] [CrossRef] [PubMed]
- Hagar, B.G.; Sayed, I.; Colter, P.C.; El-Masry, N.A.; Bedair, S.M. A new approach for Multi junction solar cells from off the shelf individual cells: GaAs/Si. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 0994–0997. [Google Scholar]
- Andreev, V.M. GaAs and High-Efficiency Space Cells. In Practical Handbook of Photovoltaics; Academic Press: Cambridge, MA, USA, 2012; pp. 399–416. [Google Scholar]
- Huan, Z.; Zheng, Y.; Wang, K.; Shen, Z.; Ni, W.; Zu, J.; Shao, Y. Advancements in radiation resistance and reinforcement strategies of perovskite solar cells in space applications. J. Mater. Chem. A 2024, 12, 1910–1922. [Google Scholar] [CrossRef]
- Parekh, R.H.; Barnett, A.M. Improved performance design of gallium arsenide solar cells for space. IEEE Trans. Electron Devices 1984, 31, 689–695. [Google Scholar] [CrossRef]
- Bhattarai, S.; Go, J.-S.; Kim, H.; Oh, H.-U. Development of a Novel Deployable Solar Panel and Mechanism for 6U CubeSat of STEP Cube Lab-II. Aerospace 2021, 8, 64. [Google Scholar] [CrossRef]
- Wood, L.W.; Gilbert, A.Q. Space-based Solar Power as a Catalyst for Space Development. Space Policy 2022, 59, 101451. [Google Scholar] [CrossRef]
- Geisz, J.F.; France, R.M.; Schulte, K.L.; Steiner, M.A.; Norman, A.G.; Guthrey, H.L.; Young, M.R.; Song, T.; Moriarty, T. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 2020, 5, 326–335. [Google Scholar] [CrossRef]
- Chiu, P.T.; Law, D.C.; Woo, R.L.; Singer, S.B.; Bhusari, D.; Hong, W.D.; Zakaria, A.; Boisvert, J.; Mesropian, S.; King, R.R.; et al. 35.8% space and 38.8% terrestrial 5J direct bonded cells. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; Available online: https://ieeexplore.ieee.org/document/6924957 (accessed on 27 November 2023).
- Cariou, R.; Benick, J.; Feldmann, F.; Höhn, O.; Hauser, H.; Beutel, P.; Razek, N.; Wimplinger, M.; Bläsi, B.; Lackner, D.; et al. III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat. Energy 2018, 3, 326–333. [Google Scholar] [CrossRef]
- Geisz, J.F.; Kurtz, S.; Wanlass, M.W.; Ward, J.S.; Duda, A.; Friedman, D.J.; Olson, J.M.; McMahon, W.E.; Moriarty, T.E.; Kiehl, J.T. High-efficiency GaInP∕GaAs∕InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Appl. Phys. Lett. 2007, 91, 023502. [Google Scholar] [CrossRef]
- Geisz, J.F.; Friedman, D.J.; Ward, J.S.; Duda, A.; Olavarria, W.J.; Moriarty, T.E.; Kiehl, J.T.; Romero, M.J.; Norman, A.G.; Jones, K.M. 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl. Phys. Lett. 2008, 93, 123505. [Google Scholar] [CrossRef]
- Kao, Y.C.; Chou, H.M.; Hsu, S.C.; Lin, A.; Lin, C.C.; Shih, Z.H.; Chang, C.L.; Hong, H.F.; Horng, R.H. Performance comparison of III–V//Si and III–V//InGaAs multi-junction solar cells fabricated by the combination of mechanical stacking and wire bonding. Sci. Rep. 2019, 9, 4308. [Google Scholar] [CrossRef] [PubMed]
- Dimroth, F.; Grave, M.; Beutel, P.; Fiedeler, U.; Karcher, C.; Tibbits, T.N.D.; Oliva, E.; Siefer, G.; Schachtner, M.; Wekkeli, A.; et al. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt. Res. Appl. 2014, 22, 277–282. [Google Scholar] [CrossRef]
- Dharmarasu, N.; Khan, A.; Yamaguchi, M.; Takamoto, T.; Ohshima, T.; Itoh, H.; Imaizumi, M.; Matsuda, S. Effects of proton irradiation on n+p InGaP solar cells. J. Appl. Phys. 2002, 91, 3306–3311. [Google Scholar] [CrossRef]
- Sato, S.; Miyamoto, H.; Imaizumi, M.; Shimazaki, K.; Morioka, C.; Kawano, K.; Ohshima, T. Degradation modeling of InGaP/GaAs/Ge triple-junction solar cells irradiated with various-energy protons. Sol. Energy Mater. Sol. Cells 2009, 93, 768–773. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Y.; Xiao, J.; Yang, D.; Zhang, Z. Degradation behaviors of electrical properties of GaInP/GaAs/Ge solar cells under< 200 keV proton irradiation. Sol. Energy Mater. Sol. Cells 2008, 92, 1652–1656. [Google Scholar]
- Gao, H.; Yang, R.; Zhang, Y. Improving radiation resistance of GaInP/GaInAs/Ge triple-junction solar cells using GaInP back-surface field in the middle subcell. Materials 2020, 13, 1958. [Google Scholar] [CrossRef]
- France, R.M.; Espinet-González, P.; Ekins-Daukes, N.J.; Guthrey, H.; Steiner, M.A.; Geisz, J.F. Multijunction Solar Cells With Graded Buffer Bragg Reflectors. IEEE J. Photovolt. 2018, 8, 1608–1615. [Google Scholar] [CrossRef]
- Arzbin, H.R.; Ghadimi, A. Improving the performance of a multi-junction solar cell by optimizing BSF, base and emitter layers. Mater. Sci. Eng. B 2019, 243, 108–114. [Google Scholar] [CrossRef]
- Aissat, A.; Arbouz, H.; Nacer, S.; Benyettou, F.; Vilcot, J.P. Efficiency optimization of the structure pin-InGaN/GaN and quantum well-InGaN for solar cells. Int. J. Hydrogen Energy 2016, 41, 20867–20873. [Google Scholar] [CrossRef]
- Fang, M.; Fei, T.; Bai, M.; Guo, Y.; Lv, J.; Quan, R.; Lu, H.; Liu, H. Annealing effects on GaAs/Ge solar cell after 150 keV proton irradiation. Int. J. Photoenergy 2020, 2020, 3082835. [Google Scholar] [CrossRef]
- Airbus, Boeing VC Groups Team to Invest in Space Solar Panel Startup|Aviation Week Network. Available online: https://aviationweek.com/aerospace/commercial-space/airbus-boeing-vc-groups-team-invest-space-solar-panel-startup (accessed on 27 November 2023).
- Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 3 December 2023).
- Furasova, A.; Voroshilov, P.; Sapori, D.; Ladutenko, K.; Barettin, D.; Zakhidov, A.; Di Carlo, A.; Simovski, C.; Makarov, S. Nanophotonics for Perovskite Solar Cells. Adv. Photonics Res. 2022, 3, 2100326. [Google Scholar] [CrossRef]
- Meng, L.; You, J.; Yang, Y. Addressing the stability issue of perovskite solar cells for commercial applications. Nature Commun. 2018, 9, 5265. [Google Scholar] [CrossRef]
- He, M.; Pang, X.; Liu, X.; Jiang, B.; He, Y.; Snaith, H.; Lin, Z. Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells. Angew. Chem. Int. Ed. 2016, 55, 4280–4284. [Google Scholar] [CrossRef]
- Romano, V.; Agresti, A.; Verduci, R.; D’Angelo, G. Advances in Perovskites for Photovoltaic Applications in Space. ACS Energy Lett. 2022, 7, 2490–2514. [Google Scholar] [CrossRef]
- Song, Z.; Abate, A.; Watthage, S.C.; Liyanage, G.K.; Phillips, A.B.; Steiner, U.; Graetzel, M.; Heben, M.J. Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2-CH3NH3I-H2O System. Adv. Energy Mater. 2016, 6, 1600846. [Google Scholar] [CrossRef]
- Yang, J.M.; Luo, Y.; Bao, Q.; Li, Y.Q.; Tang, J.X. Recent advances in energetics and stability of metal halide perovskites for optoelectronic applications. Adv. Mater. Interfaces 2019, 6, 1801351. [Google Scholar] [CrossRef]
- Kang, S.; Jeong, J.; Cho, S.; Yoon, Y.J.; Park, S.; Lim, S.; Kim, J.Y.; Ko, H. Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. J. Mater. Chem. A 2019, 7, 1107–1114. [Google Scholar] [CrossRef]
- Lang, F.; Jošt, M.; Bundesmann, J.; Denker, A.; Albrecht, S.; Landi, G.; Neitzert, H.-C.; Rappich, J.; Nickel, N.H. Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation. Energy Environ. Sci. 2019, 12, 1634–1647. [Google Scholar] [CrossRef]
- Lee, D.; Kim, K.H.; Kim, H.D. Thickness Optimization of Charge Transport Layers on Perovskite Solar Cells for Aerospace Applications. Nanomaterials 2023, 13, 1848. [Google Scholar] [CrossRef] [PubMed]
- Ott, M.N.; Coyle, D.B.; Canham, J.S.; Leidecker, H.W., Jr. Qualification and issues with space flight laser systems and components. In Proceedings of the Solid State Lasers XV: Technology and Devices, San Jose, CA, USA, 23–26 January 2006; Volume 6100, pp. 490–504. [Google Scholar]
- Brioschi, F.; Caridi, A.; Cereda, E.; Braga Marcazzan, G.M.; Zanzottera, E. Radiation effects on laser crystals for space applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1992, 66, 357–360. [Google Scholar] [CrossRef]
- Matkovskii, A.O.; Sugak, D.Y.; Durygin, A.N.; Oliinyk, V.Y.; Kaczmarek, S.M.; Kopczynski, K.; Frukacz, Z.; Pracka, I.; Lukasiewicz, T. Radiation effects in laser crystals. In Proceedings of the Solid State Crystals: Growth and Characterization, Zakopane, Poland, 7–11 October 1996; Volume 3178, pp. 273–278. [Google Scholar]
- Lee, C.; Schuck, P.J. Photodarkening, Photobrightening, and the Role of Color Centers in Emerging Applications of Lanthanide-Based Upconverting Nanomaterials. Annu. Rev. Phys. Chem. 2023, 74, 415–438. [Google Scholar] [CrossRef]
- Wernham, D.; Alves, J.; Pettazzi, F.; Tighe, A.P. Laser-induced contamination mitigation on the ALADIN laser for ADM-Aeolus. In Proceedings of the Laser-Induced Damage in Optical Materials: 2010, Boulder, CO, USA, 26–29 September 2010; Volume 7842, pp. 394–405. [Google Scholar]
- Ribes, P.; Koechlin, C.; Burkhardt, T.; Hornaff, M.; Burkhardt, D.; Kamm, A.; Gramens, S.; Beckert, E.; Fiault, G.; Eberhardt, R.; et al. High-Precision Opto-Mechanical Lens System for Space Applications Assembled by Innovative Local Soldering Technique. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9750/1/High-precision-opto-mechanical-lens-system-for-space-applications-assembled/10.1117/12.2208123.short (accessed on 28 November 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, M.A. A Comprehensive Exploration of Contemporary Photonic Devices in Space Exploration: A Review. Photonics 2024, 11, 873. https://doi.org/10.3390/photonics11090873
Butt MA. A Comprehensive Exploration of Contemporary Photonic Devices in Space Exploration: A Review. Photonics. 2024; 11(9):873. https://doi.org/10.3390/photonics11090873
Chicago/Turabian StyleButt, Muhammad A. 2024. "A Comprehensive Exploration of Contemporary Photonic Devices in Space Exploration: A Review" Photonics 11, no. 9: 873. https://doi.org/10.3390/photonics11090873
APA StyleButt, M. A. (2024). A Comprehensive Exploration of Contemporary Photonic Devices in Space Exploration: A Review. Photonics, 11(9), 873. https://doi.org/10.3390/photonics11090873