Laser-Induced Breakdown Spectroscopy and Shadowgraphy of Acoustically Levitated Heptane Droplets
Abstract
:1. Introduction
2. Experimental Setup and Methodology
2.1. Optical Setup
2.2. Spatial LIBS Methodology
2.3. Electron Density Determination by Stark Broadening
3. Results and Discussion
3.1. Shadowgraphy of Laser-Induced Droplet Fragmentation
3.2. LIBS of Laser-Induced Droplet Fragmentation
3.3. Plasma Parameters of Heptane Droplet
3.4. Spatial LIBS of Heptane Droplet
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bradley, D.; Sheppard, C.G.W.; Suardjaja, I.M.; Woolley, R. Fundamentals of high-energy spark ignition with lasers. Combust. Flame 2004, 138, 55–77. [Google Scholar] [CrossRef]
- Shukla, A.; Vaghasia, J.; Mistry, M. Effect of laser ignition on combustion and performance of internal combustion engine: A Review. Energy Convers. Manag. X 2021, 13, 100166. [Google Scholar] [CrossRef]
- Kopecek, H.; Lackner, M.; Iskra, K.F.; Forsich, C.; Rüdisser, D.; Neger, T.; Winter, F.; Wintner, E. Laser ignition of methane-air mixtures at high pressures and optical diagnostics. In ALT’02 International Conference on Advanced Laser Technologies; SPIE: Bellingham, WA, USA, 2003; Volume 5147, pp. 331–343. [Google Scholar]
- Pavel, N.; Bärwinkel, M.; Heinz, P.; Brüggemann, D.; Dearden, G.; Croitoru, G.; Grigore, O.V. Laser ignition—Spark plug development and application in reciprocating engines. Prog. Quantum Electron. 2018, 58, 1–32. [Google Scholar] [CrossRef]
- Barbosa, S.; Scouflaire, P.; Ducruix, S.; Gaborel, G. Comparisons Between Spark Plug and Laser Ignition in a Gas Turbine Combustor. In Proceedings of the European Combustion Meeting, Chania, Crete, Greece, 11–13 April 2007. [Google Scholar]
- Manfletti, C.; Kroupa, G. Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser. Opt. Express 2013, 21, A1126–A1139. [Google Scholar] [CrossRef]
- Brieschenk, S.; O’byrne, S.; Kleine, H. Laser-induced plasma ignition studies in a model scramjet engine. Combust. Flame 2013, 160, 145–148. [Google Scholar] [CrossRef]
- Börner, M.; Manfletti, C.; Grebe, A.; Gröning, S.; Hardi, J.; Stützer, R.; Suslov, D.; Oschwald, M. Experimental Study of a Laser-Ignited Liquid Cryogenic Rocket Engine. In Laser Ignition Conference; Optica Publishing Group: Washington, DC, USA, 2015; p. Th2A-5. [Google Scholar]
- Mastorakos, E. Forced ignition of turbulent spray flames. Proc. Combust. Inst. 2017, 36, 2367–2383. [Google Scholar] [CrossRef]
- de Oliveira, P.M.; Mastorakos, E. Mechanisms of flame propagation in jet fuel sprays as revealed by OH/fuel planar laser-induced fluorescence and OH* chemiluminescence. Combust. Flame 2019, 206, 308–321. [Google Scholar] [CrossRef]
- de Oliveira, P.M.; Allison, P.M.; Mastorakos, E. Ignition of uniform droplet-laden weakly turbulent flows following a laser spark. Combust. Flame 2019, 199, 387–400. [Google Scholar] [CrossRef]
- de Oliveira, P.M.; Sitte, M.P.; Kotzagianni, M.; Allison, P.M.; Mastorakos, E. A laser-induced breakdown spectroscopy method to assess the stochasticity of plasma-flame transition in sprays. Meas. Sci. Technol. 2022, 33, 095301. [Google Scholar] [CrossRef]
- El-Rabii, H.; Victorov, S.B.; Yalin, A.P. Properties of an air plasma generated by ultraviolet nanosecond laser pulses. J. Phys. D Appl. Phys. 2009, 42, 075203. [Google Scholar] [CrossRef]
- El-Rabii, H.; Zähringer, K.; Rolon, J.-C.; Lacas, F. Laser ignition in a lean premixed prevaporized injector. Combust. Sci. Technol. 2004, 176, 1391–1417. [Google Scholar] [CrossRef]
- El-Rabii, H.; Gaborel, G.; Lapios, J.-P.; Thévenin, D.; Rolon, J.; Martin, J.-P. Laser spark ignition of two-phase monodisperse mixtures. Opt. Commun. 2005, 256, 495–506. [Google Scholar] [CrossRef]
- Lawes, M.; Lee, Y.; Mokhtar, A.S.; Woolley, R. Laser Ignition of Iso-Octane Air Aerosols. Combust. Sci. Technol. 2007, 180, 296–313. [Google Scholar] [CrossRef]
- Lee, T.-W.; Jain, V.; Kozola, S. Measurements of minimum ignition energy by using laser sparks for hydrocarbon fuels in air: Propane, dodecane, and jet-A fuel. Combust. Flame 2001, 125, 1320–1328. [Google Scholar] [CrossRef]
- Lee, S.H.; Do, H.; Yoh, J.J. Simultaneous optical ignition and spectroscopy of a two-phase spray flame. Combust. Flame 2016, 165, 334–345. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Do, H.; Yoh, J. Instantaneous monitoring of local fuel concentration in a liquid hydrocarbon-fueled flame using a LIBS plug. Energy 2017, 140, 18–26. [Google Scholar] [CrossRef]
- Lee, M.W.; Park, J.J.; Farid, M.M.; Yoon, S.S. Comparison and correction of the drop breakup models for stochastic dilute spray flow. Appl. Math. Model. 2012, 36, 4512–4520. [Google Scholar] [CrossRef]
- Do, H.; Carter, C.D.; Liu, Q.; Ombrello, T.M.; Hammack, S.; Lee, T.; Hsu, K.-Y. Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown. Proc. Combust. Inst. 2015, 35, 2155–2162. [Google Scholar] [CrossRef]
- Moesl, K.G.; Vollmer, K.G.; Sattelmayer, T.; Eckstein, J.; Kopecek, H. Experimental Study on Laser-Induced Ignition of Swirl-Stabilized Kerosene Flames. J. Eng. Gas Turbines Power 2008, 131, 021501. [Google Scholar] [CrossRef]
- Kotzagianni, M.; Yuan, R.; Mastorakos, E.; Couris, S. Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme. Combust. Flame 2016, 167, 72–85. [Google Scholar] [CrossRef]
- Lokini, P.; Dumitrache, C.; Windom, B.C.; Yalin, A.P. Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA and Online, 23–27 January 2023. [Google Scholar]
- Lokini, P.; Roshan, D.K.; Kushari, A. Influence of swirl and primary zone airflow rate on the emissions and performance of a liquid-fueled gas turbine combustor. J. Energy Resour. Technol. 2019, 141, 062009. [Google Scholar] [CrossRef]
- Raizer IUP (IUrii P.). Laser-Induced Discharge Phenomena/Yu. P. Raizer; Translated from Russian by Albin Tybulewicz; Edited by George C. Vlases and Z. Adam Pietrzyk. New York: Consultants Bureau; 1977. Available online: https://catalogue.nla.gov.au/catalog/783878 (accessed on 1 October 2024).
- Gebel, G.C.; Mosbach, T.; Meier, W.; Aigner, M.; Le Brun, S. An Experimental Investigation of Kerosene Droplet Breakup by Laser-Induced Blast Waves. J. Eng. Gas Turbines Power 2013, 135, 021505. [Google Scholar] [CrossRef]
- Kawahara, N.; Tsuboi, K.; Tomita, E. Laser-induced plasma generation and evolution in a transient spray. Opt. Express 2014, 22, A44–A52. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.L.; Bouwhuis, W.; Visser, C.W.; Lhuissier, H.; Sun, C.; Snoeijer, J.H.; Villermaux, E.; Lohse, D.; Gelderblom, H. Drop Shaping by Laser-Pulse Impact. Phys. Rev. Appl. 2015, 3, 044018. [Google Scholar] [CrossRef]
- Gelderblom, H.; Lhuissier, H.; Klein, A.L.; Bouwhuis, W.; Lohse, D.; Villermaux, E.; Snoeijer, J.H. Drop deformation by laser-pulse impact. J. Fluid Mech. 2016, 794, 676–699. [Google Scholar] [CrossRef]
- Rao, D.C.K.; Singh, A.P.; Basu, S. Laser-induced deformation and fragmentation of droplets in an array. Int. J. Multiph. Flow 2022, 148, 103925. [Google Scholar] [CrossRef]
- Avila, S.R.G.; Ohl, C.-D. Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. J. Fluid Mech. 2016, 805, 551–576. [Google Scholar] [CrossRef]
- Avila, S.R.G.; Ohl, C.-D. Cavitation-induced fragmentation of an acoustically-levitated droplet. J. Physics Conf. Ser. 2015, 656, 012017. [Google Scholar] [CrossRef]
- Gonzalez-Avila, S.R.; Klaseboer, E.; Khoo, B.C.; Ohl, C.-D. Cavitation bubble dynamics in a liquid gap of variable height. J. Fluid Mech. 2011, 682, 241–260. [Google Scholar] [CrossRef]
- Bulat, P.; Minin, O.; Volkov, K. Numerical simulation of optical breakdown in a liquid droplet induced by a laser pulse. Acta Astronaut. 2018, 150, 162–171. [Google Scholar] [CrossRef]
- Hsieh, W.-F.; Eickmans, J.H.; Chang, R.K. Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere. J. Opt. Soc. Am. B 1987, 4, 1816–1820. [Google Scholar] [CrossRef]
- Eickmans, J.H.; Hsieh, W.-F.; Chang, R.K. Plasma spectroscopy of H, Li, and Na in plumes resulting from laser-induced droplet explosion. Appl. Opt. 1987, 26, 3721–3725. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Latifi, H.; Shah, P.; Radziemski, L.J.; Armstrong, R.L. Time-resolved spectroscopy of plasmas initiated on single, levitated aerosol droplets. Opt. Lett. 1987, 12, 313–315. [Google Scholar] [CrossRef] [PubMed]
- Young, A.; Graham, W.G.; Morgan, T.J.; Hüwel, L. Laser-induced breakdown in liquid water: Influence of repeated laser pulses on plasma formation and emission. J. Appl. Phys. 2021, 129, 183303. [Google Scholar] [CrossRef]
- Helfman, D.; Litwinowicz, S.; Meng, S.; Morgan, T.J.; Hüwel, L. Spatial, spectral, and temporal properties of laser-induced plasma in air near an aqueous solution and comparison with ambient air. J. Appl. Phys. 2023, 133, 183301. [Google Scholar] [CrossRef]
- Kennedy, P.K.; Hammer, D.X.; Rockwell, B.A. Laser-induced breakdown in aqueous media. Prog. Quantum Electron. 1997, 21, 155–248. [Google Scholar] [CrossRef]
- Lazic, V.; Colao, F.; Fantoni, R.; Spizzicchino, V. Laser-induced breakdown spectroscopy in water: Improvement of the detection threshold by signal processing. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1002–1013. [Google Scholar] [CrossRef]
- Biasiori-Poulanges, L.; El-Rabii, H. Shock-induced cavitation and wavefront analysis inside a water droplet. Phys. Fluids 2021, 33, 097104. [Google Scholar] [CrossRef]
- Jagadale, V.S.; Rao, D.C.K.; Deshmukh, D.; Hanstorp, D.; Mishra, Y.N. Modes of atomization in biofuel droplets induced by a focused laser pulse. Fuel 2022, 315, 123190. [Google Scholar] [CrossRef]
- Jagadale, V.S.; Deshmukh, D.; Hanstorp, D.; Mishra, Y.N. Bubble dynamics and atomization of acoustically levitated diesel and biodiesel droplets using femtosecond laser pulses. Sci. Rep. 2024, 14, 8285. [Google Scholar] [CrossRef]
- Lokini, P.; Dumitrache, C.; Yalin, A.P.; Windom, B. Laser-Induced Fragmentation and Spectroscopy of Acoustically Levitated Hydrocarbon Droplets. In Proceedings of the AIAA AVIATION Forum and ASCEND 2024, Las Vegas, NV, USA, 29 July–2 August 2024. [Google Scholar]
- Miziolek, A.W.; Palleschi, V.; Schechter, I. Laser-Induced Breakdown Spectroscopy (LIBS); Cambridge University Press (CUP): Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Windom, B.; Diwakar, P.; Hahn, D. Dual-pulse Laser Induced Breakdown Spectroscopy for analysis of gaseous and aerosol systems: Plasma-analyte interactions. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 788–796. [Google Scholar] [CrossRef]
- Diwakar, P.K.; Loper, K.H.; Matiaske, A.-M.; Hahn, D.W. Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J. Anal. At. Spectrom. 2012, 27, 1110–1119. [Google Scholar] [CrossRef]
- Lokini, P.; Dumitrache, C.; Windom, B.; Yalin, A.P. Plasma Parameters of Laser Irradiated Hydrocarbon Droplets in Air. In Proceedings of the AIAA SCITECH 2024 Forum, Orlando, FL, USA, 8 January–12 January 2024. [Google Scholar]
- Marzo, A.; Barnes, A.; Drinkwater, B.W. TinyLev: A multi-emitter single-axis acoustic levitator. Rev. Sci. Instruments 2017, 88, 085105. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Abe, Y.; Kaneko, A.; Yamamoto, Y.; Aoki, K. Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator. Microgravity Sci. Technol. 2009, 21, 9–14. [Google Scholar] [CrossRef]
- Turns, S.R. An Introduction to Combustion: Concepts and Applications; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- A Gigosos, M.; Cardeñoso, V. New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 4795–4838. [Google Scholar] [CrossRef]
- Gigosos, M.A.; Gonzalez, M.A.; Cardenoso, V. Spectrochimica Acta Electronica Computer simulated Balmer-alpha,-beta and-gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim. Acta Part B At. Spectrosc. 2003, 58, 1489–1504. [Google Scholar] [CrossRef]
- van der Horst, R.M.; Verreycken, T.; van Veldhuizen, E.M.; Bruggeman, P.J. Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures. J. Phys. D Appl. Phys. 2012, 45, 345201. [Google Scholar] [CrossRef]
- O’Haver, T. A Pragmatic Introduction to Signal Processing; University of Maryland at College Park: College Park, MD, USA, 1997. [Google Scholar]
- Ferrari, R.L. Plasma Diagnostic Techniques. Edited by R. H. Huddlestone and S. L. Leonard. Academic Press, 1965, pp. 627, $19.50. J Plasma Phys. 1967, 1, 156. [Google Scholar] [CrossRef]
- Eickmans, J.H.; Hsieh, W.-F.; Chang, R.K. Laser-induced explosion of H2O droplets: Spatially resolved spectra. Opt. Lett. 1987, 12, 22–24. [Google Scholar] [CrossRef]
- Franc, J.P. The Rayleigh-Plesset equation: A simple and powerful tool to understand various aspects of cavitation. In Fluid Dynamics of Cavitation and Cavitating Turbopumps; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–41. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.8); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. Available online: https://physics.nist.gov/asd (accessed on 18 February 2021).
- Cremers, D.A.; Radziemski, L.J.; Loree, T.R. Spectrochemical Analysis of Liquids Using the Laser Spark. Appl. Spectrosc. 1984, 38, 721–729. [Google Scholar] [CrossRef]
- Albrecht, H.; Hohmann, H.; Grunwald, R. On the Generation of C 2-Radicals by IR-Multiple-Photon Dissociation. In Laser Processing and Diagnostics: Proceedings of an International Conference, University of Linz, Austria, 15–19 July 1984; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar] [CrossRef]
- Glumac, N.; Elliott, G.; Boguszko, M. Temporal and Spatial Evolution of the Thermal Structure of a Laser Spark in Air. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Luo, Y.-R.; Pacey, P.D. Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations Part 2.* Alkanes and chloro-, bromo- and iodoalkanes. Int. J. Mass Spectrom. Ion Process. 1992, 112, 63–77. [Google Scholar] [CrossRef]
- Trickl, T.; Cromwell, E.F.; Lee, Y.T.; Kung, A.H. State-selective ionization of nitrogen in the X 2Σ+g v+=0 and v+=1 states by two-color (1 + 1) photon excitation near threshold. J. Chem. Phys. 1989, 91, 6006–6012. [Google Scholar] [CrossRef]
- Tonkyn, R.G.; Winniczek, J.W.; White, M.G. Rotationally resolved photoionization of O2+ near threshold. Chem. Phys. Lett. 1989, 164, 137–142. [Google Scholar] [CrossRef]
Laser Energy (mJ) | Droplet Diameter Range (mm) |
---|---|
35 | 1.1 ± 0.1 |
80 | 1 ± 0.2 |
80 | 1.5 ± 0.2 |
100 | 1.1 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lokini, P.; Dumitrache, C.; Windom, B.C.; Yalin, A.P. Laser-Induced Breakdown Spectroscopy and Shadowgraphy of Acoustically Levitated Heptane Droplets. Photonics 2024, 11, 1044. https://doi.org/10.3390/photonics11111044
Lokini P, Dumitrache C, Windom BC, Yalin AP. Laser-Induced Breakdown Spectroscopy and Shadowgraphy of Acoustically Levitated Heptane Droplets. Photonics. 2024; 11(11):1044. https://doi.org/10.3390/photonics11111044
Chicago/Turabian StyleLokini, Parneeth, Ciprian Dumitrache, Bret C. Windom, and Azer P. Yalin. 2024. "Laser-Induced Breakdown Spectroscopy and Shadowgraphy of Acoustically Levitated Heptane Droplets" Photonics 11, no. 11: 1044. https://doi.org/10.3390/photonics11111044
APA StyleLokini, P., Dumitrache, C., Windom, B. C., & Yalin, A. P. (2024). Laser-Induced Breakdown Spectroscopy and Shadowgraphy of Acoustically Levitated Heptane Droplets. Photonics, 11(11), 1044. https://doi.org/10.3390/photonics11111044