Laser-Induced Breakdown Spectroscopy and Shadowgraphy of Acoustically Levitated Heptane Droplets
Abstract
1. Introduction
2. Experimental Setup and Methodology
2.1. Optical Setup
2.2. Spatial LIBS Methodology
2.3. Electron Density Determination by Stark Broadening
3. Results and Discussion
3.1. Shadowgraphy of Laser-Induced Droplet Fragmentation
3.2. LIBS of Laser-Induced Droplet Fragmentation
3.3. Plasma Parameters of Heptane Droplet
3.4. Spatial LIBS of Heptane Droplet
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bradley, D.; Sheppard, C.G.W.; Suardjaja, I.M.; Woolley, R. Fundamentals of high-energy spark ignition with lasers. Combust. Flame 2004, 138, 55–77. [Google Scholar] [CrossRef]
- Shukla, A.; Vaghasia, J.; Mistry, M. Effect of laser ignition on combustion and performance of internal combustion engine: A Review. Energy Convers. Manag. X 2021, 13, 100166. [Google Scholar] [CrossRef]
- Kopecek, H.; Lackner, M.; Iskra, K.F.; Forsich, C.; Rüdisser, D.; Neger, T.; Winter, F.; Wintner, E. Laser ignition of methane-air mixtures at high pressures and optical diagnostics. In ALT’02 International Conference on Advanced Laser Technologies; SPIE: Bellingham, WA, USA, 2003; Volume 5147, pp. 331–343. [Google Scholar]
- Pavel, N.; Bärwinkel, M.; Heinz, P.; Brüggemann, D.; Dearden, G.; Croitoru, G.; Grigore, O.V. Laser ignition—Spark plug development and application in reciprocating engines. Prog. Quantum Electron. 2018, 58, 1–32. [Google Scholar] [CrossRef]
- Barbosa, S.; Scouflaire, P.; Ducruix, S.; Gaborel, G. Comparisons Between Spark Plug and Laser Ignition in a Gas Turbine Combustor. In Proceedings of the European Combustion Meeting, Chania, Crete, Greece, 11–13 April 2007. [Google Scholar]
- Manfletti, C.; Kroupa, G. Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser. Opt. Express 2013, 21, A1126–A1139. [Google Scholar] [CrossRef]
- Brieschenk, S.; O’byrne, S.; Kleine, H. Laser-induced plasma ignition studies in a model scramjet engine. Combust. Flame 2013, 160, 145–148. [Google Scholar] [CrossRef]
- Börner, M.; Manfletti, C.; Grebe, A.; Gröning, S.; Hardi, J.; Stützer, R.; Suslov, D.; Oschwald, M. Experimental Study of a Laser-Ignited Liquid Cryogenic Rocket Engine. In Laser Ignition Conference; Optica Publishing Group: Washington, DC, USA, 2015; p. Th2A-5. [Google Scholar]
- Mastorakos, E. Forced ignition of turbulent spray flames. Proc. Combust. Inst. 2017, 36, 2367–2383. [Google Scholar] [CrossRef]
- de Oliveira, P.M.; Mastorakos, E. Mechanisms of flame propagation in jet fuel sprays as revealed by OH/fuel planar laser-induced fluorescence and OH* chemiluminescence. Combust. Flame 2019, 206, 308–321. [Google Scholar] [CrossRef]
- de Oliveira, P.M.; Allison, P.M.; Mastorakos, E. Ignition of uniform droplet-laden weakly turbulent flows following a laser spark. Combust. Flame 2019, 199, 387–400. [Google Scholar] [CrossRef]
- de Oliveira, P.M.; Sitte, M.P.; Kotzagianni, M.; Allison, P.M.; Mastorakos, E. A laser-induced breakdown spectroscopy method to assess the stochasticity of plasma-flame transition in sprays. Meas. Sci. Technol. 2022, 33, 095301. [Google Scholar] [CrossRef]
- El-Rabii, H.; Victorov, S.B.; Yalin, A.P. Properties of an air plasma generated by ultraviolet nanosecond laser pulses. J. Phys. D Appl. Phys. 2009, 42, 075203. [Google Scholar] [CrossRef]
- El-Rabii, H.; Zähringer, K.; Rolon, J.-C.; Lacas, F. Laser ignition in a lean premixed prevaporized injector. Combust. Sci. Technol. 2004, 176, 1391–1417. [Google Scholar] [CrossRef]
- El-Rabii, H.; Gaborel, G.; Lapios, J.-P.; Thévenin, D.; Rolon, J.; Martin, J.-P. Laser spark ignition of two-phase monodisperse mixtures. Opt. Commun. 2005, 256, 495–506. [Google Scholar] [CrossRef]
- Lawes, M.; Lee, Y.; Mokhtar, A.S.; Woolley, R. Laser Ignition of Iso-Octane Air Aerosols. Combust. Sci. Technol. 2007, 180, 296–313. [Google Scholar] [CrossRef]
- Lee, T.-W.; Jain, V.; Kozola, S. Measurements of minimum ignition energy by using laser sparks for hydrocarbon fuels in air: Propane, dodecane, and jet-A fuel. Combust. Flame 2001, 125, 1320–1328. [Google Scholar] [CrossRef]
- Lee, S.H.; Do, H.; Yoh, J.J. Simultaneous optical ignition and spectroscopy of a two-phase spray flame. Combust. Flame 2016, 165, 334–345. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Do, H.; Yoh, J. Instantaneous monitoring of local fuel concentration in a liquid hydrocarbon-fueled flame using a LIBS plug. Energy 2017, 140, 18–26. [Google Scholar] [CrossRef]
- Lee, M.W.; Park, J.J.; Farid, M.M.; Yoon, S.S. Comparison and correction of the drop breakup models for stochastic dilute spray flow. Appl. Math. Model. 2012, 36, 4512–4520. [Google Scholar] [CrossRef]
- Do, H.; Carter, C.D.; Liu, Q.; Ombrello, T.M.; Hammack, S.; Lee, T.; Hsu, K.-Y. Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown. Proc. Combust. Inst. 2015, 35, 2155–2162. [Google Scholar] [CrossRef]
- Moesl, K.G.; Vollmer, K.G.; Sattelmayer, T.; Eckstein, J.; Kopecek, H. Experimental Study on Laser-Induced Ignition of Swirl-Stabilized Kerosene Flames. J. Eng. Gas Turbines Power 2008, 131, 021501. [Google Scholar] [CrossRef]
- Kotzagianni, M.; Yuan, R.; Mastorakos, E.; Couris, S. Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme. Combust. Flame 2016, 167, 72–85. [Google Scholar] [CrossRef]
- Lokini, P.; Dumitrache, C.; Windom, B.C.; Yalin, A.P. Laser Ignition and Laser-Induced Breakdown Spectroscopy of a Hydrocarbon Flame in an Annular Spray Burner. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA and Online, 23–27 January 2023. [Google Scholar]
- Lokini, P.; Roshan, D.K.; Kushari, A. Influence of swirl and primary zone airflow rate on the emissions and performance of a liquid-fueled gas turbine combustor. J. Energy Resour. Technol. 2019, 141, 062009. [Google Scholar] [CrossRef]
- Raizer IUP (IUrii P.). Laser-Induced Discharge Phenomena/Yu. P. Raizer; Translated from Russian by Albin Tybulewicz; Edited by George C. Vlases and Z. Adam Pietrzyk. New York: Consultants Bureau; 1977. Available online: https://catalogue.nla.gov.au/catalog/783878 (accessed on 1 October 2024).
- Gebel, G.C.; Mosbach, T.; Meier, W.; Aigner, M.; Le Brun, S. An Experimental Investigation of Kerosene Droplet Breakup by Laser-Induced Blast Waves. J. Eng. Gas Turbines Power 2013, 135, 021505. [Google Scholar] [CrossRef]
- Kawahara, N.; Tsuboi, K.; Tomita, E. Laser-induced plasma generation and evolution in a transient spray. Opt. Express 2014, 22, A44–A52. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.L.; Bouwhuis, W.; Visser, C.W.; Lhuissier, H.; Sun, C.; Snoeijer, J.H.; Villermaux, E.; Lohse, D.; Gelderblom, H. Drop Shaping by Laser-Pulse Impact. Phys. Rev. Appl. 2015, 3, 044018. [Google Scholar] [CrossRef]
- Gelderblom, H.; Lhuissier, H.; Klein, A.L.; Bouwhuis, W.; Lohse, D.; Villermaux, E.; Snoeijer, J.H. Drop deformation by laser-pulse impact. J. Fluid Mech. 2016, 794, 676–699. [Google Scholar] [CrossRef]
- Rao, D.C.K.; Singh, A.P.; Basu, S. Laser-induced deformation and fragmentation of droplets in an array. Int. J. Multiph. Flow 2022, 148, 103925. [Google Scholar] [CrossRef]
- Avila, S.R.G.; Ohl, C.-D. Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. J. Fluid Mech. 2016, 805, 551–576. [Google Scholar] [CrossRef]
- Avila, S.R.G.; Ohl, C.-D. Cavitation-induced fragmentation of an acoustically-levitated droplet. J. Physics Conf. Ser. 2015, 656, 012017. [Google Scholar] [CrossRef]
- Gonzalez-Avila, S.R.; Klaseboer, E.; Khoo, B.C.; Ohl, C.-D. Cavitation bubble dynamics in a liquid gap of variable height. J. Fluid Mech. 2011, 682, 241–260. [Google Scholar] [CrossRef]
- Bulat, P.; Minin, O.; Volkov, K. Numerical simulation of optical breakdown in a liquid droplet induced by a laser pulse. Acta Astronaut. 2018, 150, 162–171. [Google Scholar] [CrossRef]
- Hsieh, W.-F.; Eickmans, J.H.; Chang, R.K. Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere. J. Opt. Soc. Am. B 1987, 4, 1816–1820. [Google Scholar] [CrossRef]
- Eickmans, J.H.; Hsieh, W.-F.; Chang, R.K. Plasma spectroscopy of H, Li, and Na in plumes resulting from laser-induced droplet explosion. Appl. Opt. 1987, 26, 3721–3725. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Latifi, H.; Shah, P.; Radziemski, L.J.; Armstrong, R.L. Time-resolved spectroscopy of plasmas initiated on single, levitated aerosol droplets. Opt. Lett. 1987, 12, 313–315. [Google Scholar] [CrossRef] [PubMed]
- Young, A.; Graham, W.G.; Morgan, T.J.; Hüwel, L. Laser-induced breakdown in liquid water: Influence of repeated laser pulses on plasma formation and emission. J. Appl. Phys. 2021, 129, 183303. [Google Scholar] [CrossRef]
- Helfman, D.; Litwinowicz, S.; Meng, S.; Morgan, T.J.; Hüwel, L. Spatial, spectral, and temporal properties of laser-induced plasma in air near an aqueous solution and comparison with ambient air. J. Appl. Phys. 2023, 133, 183301. [Google Scholar] [CrossRef]
- Kennedy, P.K.; Hammer, D.X.; Rockwell, B.A. Laser-induced breakdown in aqueous media. Prog. Quantum Electron. 1997, 21, 155–248. [Google Scholar] [CrossRef]
- Lazic, V.; Colao, F.; Fantoni, R.; Spizzicchino, V. Laser-induced breakdown spectroscopy in water: Improvement of the detection threshold by signal processing. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1002–1013. [Google Scholar] [CrossRef]
- Biasiori-Poulanges, L.; El-Rabii, H. Shock-induced cavitation and wavefront analysis inside a water droplet. Phys. Fluids 2021, 33, 097104. [Google Scholar] [CrossRef]
- Jagadale, V.S.; Rao, D.C.K.; Deshmukh, D.; Hanstorp, D.; Mishra, Y.N. Modes of atomization in biofuel droplets induced by a focused laser pulse. Fuel 2022, 315, 123190. [Google Scholar] [CrossRef]
- Jagadale, V.S.; Deshmukh, D.; Hanstorp, D.; Mishra, Y.N. Bubble dynamics and atomization of acoustically levitated diesel and biodiesel droplets using femtosecond laser pulses. Sci. Rep. 2024, 14, 8285. [Google Scholar] [CrossRef]
- Lokini, P.; Dumitrache, C.; Yalin, A.P.; Windom, B. Laser-Induced Fragmentation and Spectroscopy of Acoustically Levitated Hydrocarbon Droplets. In Proceedings of the AIAA AVIATION Forum and ASCEND 2024, Las Vegas, NV, USA, 29 July–2 August 2024. [Google Scholar]
- Miziolek, A.W.; Palleschi, V.; Schechter, I. Laser-Induced Breakdown Spectroscopy (LIBS); Cambridge University Press (CUP): Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Windom, B.; Diwakar, P.; Hahn, D. Dual-pulse Laser Induced Breakdown Spectroscopy for analysis of gaseous and aerosol systems: Plasma-analyte interactions. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 788–796. [Google Scholar] [CrossRef]
- Diwakar, P.K.; Loper, K.H.; Matiaske, A.-M.; Hahn, D.W. Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J. Anal. At. Spectrom. 2012, 27, 1110–1119. [Google Scholar] [CrossRef]
- Lokini, P.; Dumitrache, C.; Windom, B.; Yalin, A.P. Plasma Parameters of Laser Irradiated Hydrocarbon Droplets in Air. In Proceedings of the AIAA SCITECH 2024 Forum, Orlando, FL, USA, 8 January–12 January 2024. [Google Scholar]
- Marzo, A.; Barnes, A.; Drinkwater, B.W. TinyLev: A multi-emitter single-axis acoustic levitator. Rev. Sci. Instruments 2017, 88, 085105. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Abe, Y.; Kaneko, A.; Yamamoto, Y.; Aoki, K. Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator. Microgravity Sci. Technol. 2009, 21, 9–14. [Google Scholar] [CrossRef]
- Turns, S.R. An Introduction to Combustion: Concepts and Applications; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- A Gigosos, M.; Cardeñoso, V. New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 4795–4838. [Google Scholar] [CrossRef]
- Gigosos, M.A.; Gonzalez, M.A.; Cardenoso, V. Spectrochimica Acta Electronica Computer simulated Balmer-alpha,-beta and-gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim. Acta Part B At. Spectrosc. 2003, 58, 1489–1504. [Google Scholar] [CrossRef]
- van der Horst, R.M.; Verreycken, T.; van Veldhuizen, E.M.; Bruggeman, P.J. Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures. J. Phys. D Appl. Phys. 2012, 45, 345201. [Google Scholar] [CrossRef]
- O’Haver, T. A Pragmatic Introduction to Signal Processing; University of Maryland at College Park: College Park, MD, USA, 1997. [Google Scholar]
- Ferrari, R.L. Plasma Diagnostic Techniques. Edited by R. H. Huddlestone and S. L. Leonard. Academic Press, 1965, pp. 627, $19.50. J Plasma Phys. 1967, 1, 156. [Google Scholar] [CrossRef]
- Eickmans, J.H.; Hsieh, W.-F.; Chang, R.K. Laser-induced explosion of H2O droplets: Spatially resolved spectra. Opt. Lett. 1987, 12, 22–24. [Google Scholar] [CrossRef]
- Franc, J.P. The Rayleigh-Plesset equation: A simple and powerful tool to understand various aspects of cavitation. In Fluid Dynamics of Cavitation and Cavitating Turbopumps; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–41. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.8); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. Available online: https://physics.nist.gov/asd (accessed on 18 February 2021).
- Cremers, D.A.; Radziemski, L.J.; Loree, T.R. Spectrochemical Analysis of Liquids Using the Laser Spark. Appl. Spectrosc. 1984, 38, 721–729. [Google Scholar] [CrossRef]
- Albrecht, H.; Hohmann, H.; Grunwald, R. On the Generation of C 2-Radicals by IR-Multiple-Photon Dissociation. In Laser Processing and Diagnostics: Proceedings of an International Conference, University of Linz, Austria, 15–19 July 1984; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar] [CrossRef]
- Glumac, N.; Elliott, G.; Boguszko, M. Temporal and Spatial Evolution of the Thermal Structure of a Laser Spark in Air. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Luo, Y.-R.; Pacey, P.D. Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations Part 2.* Alkanes and chloro-, bromo- and iodoalkanes. Int. J. Mass Spectrom. Ion Process. 1992, 112, 63–77. [Google Scholar] [CrossRef]
- Trickl, T.; Cromwell, E.F.; Lee, Y.T.; Kung, A.H. State-selective ionization of nitrogen in the X 2Σ+g v+=0 and v+=1 states by two-color (1 + 1) photon excitation near threshold. J. Chem. Phys. 1989, 91, 6006–6012. [Google Scholar] [CrossRef]
- Tonkyn, R.G.; Winniczek, J.W.; White, M.G. Rotationally resolved photoionization of O2+ near threshold. Chem. Phys. Lett. 1989, 164, 137–142. [Google Scholar] [CrossRef]
Laser Energy (mJ) | Droplet Diameter Range (mm) |
---|---|
35 | 1.1 ± 0.1 |
80 | 1 ± 0.2 |
80 | 1.5 ± 0.2 |
100 | 1.1 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lokini, P.; Dumitrache, C.; Windom, B.C.; Yalin, A.P. Laser-Induced Breakdown Spectroscopy and Shadowgraphy of Acoustically Levitated Heptane Droplets. Photonics 2024, 11, 1044. https://doi.org/10.3390/photonics11111044
Lokini P, Dumitrache C, Windom BC, Yalin AP. Laser-Induced Breakdown Spectroscopy and Shadowgraphy of Acoustically Levitated Heptane Droplets. Photonics. 2024; 11(11):1044. https://doi.org/10.3390/photonics11111044
Chicago/Turabian StyleLokini, Parneeth, Ciprian Dumitrache, Bret C. Windom, and Azer P. Yalin. 2024. "Laser-Induced Breakdown Spectroscopy and Shadowgraphy of Acoustically Levitated Heptane Droplets" Photonics 11, no. 11: 1044. https://doi.org/10.3390/photonics11111044
APA StyleLokini, P., Dumitrache, C., Windom, B. C., & Yalin, A. P. (2024). Laser-Induced Breakdown Spectroscopy and Shadowgraphy of Acoustically Levitated Heptane Droplets. Photonics, 11(11), 1044. https://doi.org/10.3390/photonics11111044