Optimal Design of Small-Aperture Optical Terminals for Free-Space Links
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atmospheric Turbulence
2.2. Fibre-Optic Coupling
2.3. Link Power Loss and Fluctuations
2.4. Numerical Simulation
3. Results and Discussion
3.1. Power Throughput Optimisation
3.2. Tip-Tilt Bandwidth Optimisation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SMF | Single-mode fibre |
FWHM | Full width at half maximum |
FSO | Free-space optical |
RMS | Root mean square |
TT | Tip-tilt |
PSD | Power spectral density |
References
- Giorgetta, F.R.; Swann, W.C.; Sinclair, L.C.; Baumann, E.; Coddington, I.; Newbury, N.R. Optical two-way time and frequency transfer over free space. Nat. Photonics 2013, 7, 434–438. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Optical Communication in Space: Challenges and Mitigation Techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96. [Google Scholar] [CrossRef]
- Strohbehn, J.W.; Clifford, S.F. Laser Beam Propagation in the Atmosphere; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar]
- Wree, C.; Collier, C.P.; Lane, S.; Turney, A.; Armentrout, B.; Yates, J.; Francis, N.; Joshi, A. Ten Gb/s optically pre-amplified RZ-DPSK for FSO communications systems with very large link losses. In Proceedings of the Free-Space Laser Communications VIII, San Diego, CA, USA, 10–12 August 2008; Majumdar, A.K., Davis, C.C., Eds.; SPIE: Bellingham, WA, USA, 2008; Volume 7091, p. 709103. [Google Scholar] [CrossRef]
- Tang, Y.; Brandt-Pearce, M.; Wilson, S.G. Link Adaptation for Throughput Optimization of Parallel Channels with Application to Hybrid FSO/RF Systems. IEEE Trans. Commun. 2012, 60, 2723–2732. [Google Scholar] [CrossRef]
- Yu, M.; Li, J.; Ricklin, J.C. Efficient forward error correction coding for free-space optical communications. In Proceedings of the Free-Space Laser Communications IV, Denver, CO, USA, 2–4 August 2004; Ricklin, J.C., Voelz, D.G., Eds.; SPIE: Bellingham, WA, USA, 2004; Volume 5550, p. 344. [Google Scholar] [CrossRef]
- Ip, E.; Lau, A.P.T.; Barros, D.J.F.; Kahn, J.M. Coherent detection in optical fiber systems. Opt. Express 2008, 16, 753. [Google Scholar] [CrossRef] [PubMed]
- Pesek, P.; Zvanovec, S.; Chvojka, P.; Ghassemlooy, Z.; Haigh, P.A. Demonstration of a Hybrid FSO/VLC Link for the Last Mile and Last Meter Networks. IEEE Photonics J. 2019, 11, 1–7. [Google Scholar] [CrossRef]
- Feng, X.; Wu, Z.; Wang, T.; Zhang, P.; Li, X.; Jiang, H.; Su, Y.; He, H.; Wang, X.; Gao, S. Experimental demonstration of bidirectional up to 40 Gbit/s QPSK coherent free-space optical communication link over ~1 km. Opt. Commun. 2018, 410, 674–679. [Google Scholar] [CrossRef]
- Karpathakis, S.F.E.; Dix-Matthews, B.P.; Gozzard, D.R.; Schediwy, S.W. High-bandwidth coherent optical communication over 10.3km of turbulent air. Appl. Optics 2023, 62, G85. [Google Scholar] [CrossRef]
- Balasiano, O.; Wohlgemuth, E.; Attia, I.; Roizman, A.; Falk, T.; Faig, R.; Shapira, A.; Yoffe, Y.; Cohen, R.J.; Vered, R.; et al. 10 km Retro-reflected Coherent Atmospheric FSOC at 128 Gbps 16-QAM. In Proceedings of the Optica Advanced Photonics Congress 2022, Busan, Republic Of Korea, 10–13 July 2022; Optica Publishing Group: Washington, DC, USA, 2022; Volume 31, p. SpTu3G.5. [Google Scholar] [CrossRef]
- Schieler, C.M.; Garg, A.S.; Bilyeu, B.C.; Wang, J.P.; Robinson, B.S. Demonstration of Reliable High-Rate Optical Communication over an Atmospheric Link using ARQ. In Proceedings of the 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Portland, OR, USA, 14–16 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Gozzard, D.; Howard, L.; Dix-Matthews, B.; Karpathakis, S.; Gravestock, C.; Schediwy, S. Ultrastable Free-Space Laser Links for a Global Network of Optical Atomic Clocks. Phys. Rev. Lett. 2022, 128, 020801. [Google Scholar] [CrossRef]
- Bodine, M.I.; Ellis, J.L.; Swann, W.C.; Stevenson, S.A.; Deschênes, J.D.; Hannah, E.D.; Manurkar, P.; Newbury, N.R.; Sinclair, L.C. Optical time-frequency transfer across a free-space, three-node network. APL Photonics 2020, 5, 076113. [Google Scholar] [CrossRef]
- Sinclair, L.C.; Swann, W.C.; Bergeron, H.; Baumann, E.; Cermak, M.; Coddington, I.; Deschênes, J.D.; Giorgetta, F.R.; Juarez, J.C.; Khader, I.; et al. Synchronization of clocks through 12 km of strongly turbulent air over a city. Appl. Phys. Lett. 2016, 109, 151104. [Google Scholar] [CrossRef]
- Beland, R.R. Propagation through atmospheric optical turbulence. Atmos. Propag. Radiat. 1993, 2, 157–232. [Google Scholar]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation Through Random Media; SPIE: Bellingham, WA, USA, 2005. [Google Scholar] [CrossRef]
- Cagigal, M.P.; Canales, V.F. Generalized Fried parameter after adaptive optics partial wave-front compensation. J. Opt. Soc. Am. A 2000, 17, 903. [Google Scholar] [CrossRef] [PubMed]
- Noll, R.J. Zernike polynomials and atmospheric turbulence*. J. Opt. Soc. Am. 1976, 66, 207. [Google Scholar] [CrossRef]
- Dikmelik, Y.; Davidson, F.M. Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence. Appl. Optics 2005, 44, 4946. [Google Scholar] [CrossRef]
- Carrasco-Casado, A.; Mata-Calvo, R. Space Optical Links for Communication Networks. In Springer Handbook of Optical Networks; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 1057–1103. [Google Scholar] [CrossRef]
- Clifford, S.F.; Ochs, G.R.; Lawrence, R.S. Saturation of optical scintillation by strong turbulence*. J. Opt. Soc. Am. 1974, 64, 148. [Google Scholar] [CrossRef]
- Churnside, J.H. Aperture averaging of optical scintillations in the turbulent atmosphere. Appl. Opt. 1991, 30, 1982. [Google Scholar] [CrossRef]
- Townson, M.J.; Farley, O.J.D.; Orban de Xivry, G.; Osborn, J.; Reeves, A.P. AOtools: A Python package for adaptive optics modelling and analysis. Opt. Express 2019, 27, 31316. [Google Scholar] [CrossRef]
- Osborn, J.; Townson, M.J.; Farley, O.J.D.; Reeves, A.; Calvo, R.M. Adaptive Optics pre-compensated laser uplink to LEO and GEO. Opt. Express 2021, 29, 6113. [Google Scholar] [CrossRef]
- Johnston, R.A.; Lane, R.G. Modeling scintillation from an aperiodic Kolmogorov phase screen. Appl. Opt. 2000, 39, 4761. [Google Scholar] [CrossRef]
- Dix-Matthews, B.; Karpathakis, S.; Schediwy, S. Atmospheric turbulence characterization with simultaneous measurement of phase, angle-of-arrival, and intensity in a retroreflected optical link. Opt. Lett. 2023, 48, 5519–5522. [Google Scholar] [CrossRef]
- Manning, S.; Clare, B.A.; Grant, K.J.; Mudge, K.A. Development and implementation of a robust angle of arrival turbulence measurement system. Opt. Eng. 2015, 54, 114104. [Google Scholar] [CrossRef]
- Chen, M.; Liu, C.; Xian, H. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics. Appl. Opt. 2015, 54, 8722. [Google Scholar] [CrossRef] [PubMed]
- Tyler, G.A. Bandwidth considerations for tracking through turbulence. J. Opt. Soc. Am. A 1994, 11, 358. [Google Scholar] [CrossRef]
- Marcuse, D. Loss Analysis of Single-Mode Fiber Splices. Bell Syst. Tech. J. 1977, 56, 703–718. [Google Scholar] [CrossRef]
- Walsh, S.M.; Karpathakis, S.F.E.; McCann, A.S.; Dix-Matthews, B.P.; Frost, A.M.; Gozzard, D.R.; Gravestock, C.T.; Schediwy, S.W. Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates. Sci. Rep. 2022, 12, 18345. [Google Scholar] [CrossRef]
L [m] | [] | [mm] | D [mm] | [mm] | [dB] |
---|---|---|---|---|---|
750 | 371–410 | 32.4 | 152 | −0.899 | |
141–158 | −0.948 | ||||
93.5–107 | −1.02 | ||||
2400 | 187–280 | 57.9 | 272 | −0.994 | |
74.8–117 | −1.43 | ||||
5.27–8.42 | −1.85 | ||||
10,600 | 125–144 | 122 | 574 | −2.24 | |
8 | −5.90 | ||||
3.99–4.00 | −8.69 |
L [m] | [] | D [mm] | [Hz] | [rad] |
---|---|---|---|---|
750 | 32.4 | <1 | 7.68 | |
<1 | 17.2 | |||
<1 | 24.2 | |||
2400 | 57.9 | <1 | 12.5 | |
4.74 | 17.8 | |||
15.8 | 39.4 | |||
10,600 | 122 | 11.9 | 23.0 | |
42.3 | 51.5 | |||
63.1 | 72.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frost, A.; Dix-Matthews, B.; Walsh, S.; Gozzard, D.; Schediwy, S. Optimal Design of Small-Aperture Optical Terminals for Free-Space Links. Photonics 2024, 11, 1035. https://doi.org/10.3390/photonics11111035
Frost A, Dix-Matthews B, Walsh S, Gozzard D, Schediwy S. Optimal Design of Small-Aperture Optical Terminals for Free-Space Links. Photonics. 2024; 11(11):1035. https://doi.org/10.3390/photonics11111035
Chicago/Turabian StyleFrost, Alex, Benjamin Dix-Matthews, Shane Walsh, David Gozzard, and Sascha Schediwy. 2024. "Optimal Design of Small-Aperture Optical Terminals for Free-Space Links" Photonics 11, no. 11: 1035. https://doi.org/10.3390/photonics11111035
APA StyleFrost, A., Dix-Matthews, B., Walsh, S., Gozzard, D., & Schediwy, S. (2024). Optimal Design of Small-Aperture Optical Terminals for Free-Space Links. Photonics, 11(11), 1035. https://doi.org/10.3390/photonics11111035