An Objective Evaluation Method for Image Sharpness Under Different Illumination Imaging Conditions
Abstract
:1. Introduction
2. Feature Extraction
2.1. Visual Saliency (VS) Index
2.2. Color Difference (CD) Index
2.3. Gradient Index
2.4. Image Feature Value
3. Algorithm Framework
3.1. Generalized Regression Neural Network (GRNN)
3.2. Particle Swarm Optimization (PSO) Algorithm
- (1)
- Initializing the population: Randomly initialize the position (Pi) and velocity of each particle in the population (vi), the maximum number of iterations of the algorithm, etc.
- (2)
- Calculate the fitness value of each particle based on the fitness function, save the optimal position of each particle (i), and save the individual best fitness value (pbesti) and the global best position of the population (gbesti).
- (3)
- Update the velocity and position based on the velocity and position the update formula according to the following equations:
- (4)
- Determine whether the search results meet the stopping conditions (reach the maximum number of iterations or meet the accuracy requirements). If the stopping conditions are met, output the optimal value. Otherwise, proceed to the second step and continue running until the stopping conditions are met.
3.3. PSO-GRNN Image Quality Evaluation Model
4. Experiments and Discussion
4.1. Database and Evaluation Indicators
- 1.
- Prediction Accuracy
- 2.
- Prediction Monotonicity
4.2. Performance Comparison
4.3. Performance of Image Feature Selection
4.4. Performance on Different Scenarios on CID2013
4.5. Scatter Plot and Fitting Curve
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sachin; Kumar, R.; Sakshi; Yadav, R.; Reddy, S.G.; Yadav, A.K.; Singh, P. Advances in Optical Visual Information Security: A Comprehensive Review. Photonics 2024, 11, 99. [Google Scholar] [CrossRef]
- Xu, W.; Wei, L.; Yi, X.; Lin, Y. Spectral Image Reconstruction Using Recovered Basis Vector Coefficients. Photonics 2023, 10, 1018. [Google Scholar] [CrossRef]
- Sun, X.; Kong, L.; Wang, X.; Peng, X.; Dong, G. Lights off the Image: Highlight Suppression for Single Texture-Rich Images in Optical Inspection Based on Wavelet Transform and Fusion Strategy. Photonics 2024, 11, 623. [Google Scholar] [CrossRef]
- Qiu, J.; Xu, H.; Ye, Z.; Diao, C. Image quality degradation of object-color metamer mismatching in digital camera color reproduction. Appl. Opt. 2018, 57, 2851–2860. [Google Scholar] [CrossRef]
- Liu, C.; Zou, Z.; Miao, Y.; Qiu, J. Light field quality assessment based on aggregation learning of multiple visual features. Opt. Express 2022, 30, 38298–38318. [Google Scholar] [CrossRef]
- Kim, B.; Heo, D.; Moon, W.; Hahh, J. Absolute Depth Estimation Based on a Sharpness-assessment Algorithm for a Camera with an Asymmetric Aperture. Curr. Opt. Photonics 2021, 5, 514–523. [Google Scholar]
- Baig, M.A.; Moinuddin, A.A.; Khan, E. A simple spatial domain method for quality evaluation of blurred images. Multimed. Syst. 2024, 30, 28. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H. Image Quality Assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Shi, C.; Lin, Y. Full reference image quality assessment based on visual salience with color appearance and gradient similarity. IEEE Access 2020, 8, 97310–97320. [Google Scholar] [CrossRef]
- Dost, S.; Saud, F.; Shabbir, M.; Khan, M.G.; Shahid, M.; Lovstrom, B. Reduced reference image and video quality assessments: Review of methods. EURASIP J. Image Video Process. 2022, 2022, 1–31. [Google Scholar] [CrossRef]
- Bahrami, K.; Kot, A.C. A fast approach for no-reference image sharpness assessment based on maximum local variation. IEEE Signal Process. Lett. 2014, 21, 751–755. [Google Scholar] [CrossRef]
- Li, L.; Lin, W.; Wang, X.; Yang, G.; Bahrami, K.; Kot, A.C. No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans. Cybern. 2017, 46, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Gvozden, G.; Grgic, S.; Grgic, M. Blind image sharpness assessment based on local contrast map statistics. J. Vis. Commun. Image Represent. 2018, 50, 145–158. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, L.; Wang, Z.; Ke, Z.; Zhi, C. Review: A Survey on Objective Evaluation of Image Sharpness. Appl. Sci. 2023, 13, 2652. [Google Scholar] [CrossRef]
- Li, L.; Xia, W.; Lin, W.; Fang, Y.; Wang, S. No-Reference and Robust Image Sharpness Evaluation Based on Multiscale Spatial and Spectral Features. IEEE Trans. Multimed. 2017, 19, 1030–1040. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, W.; Li, H. A no-reference image sharpness metric based on structural information using sparse representation. Inf. Sci. 2016, 369, 334–346. [Google Scholar] [CrossRef]
- Yu, S.; Wu, S.; Wang, L.; Jiang, F.; Xie, Y.; Li, L. A shallow convolutional neural network for blind image sharpness assessment. PLoS ONE 2017, 12, e0176632. [Google Scholar] [CrossRef]
- Kim, J.; Nguyen, A.D.; Lee, S. Deep CNN-based blind image quality predictor. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 11–24. [Google Scholar] [CrossRef]
- Liu, L.; Liu, B.; Huang, H.; Bovik, A.C. No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 2014, 29, 856–863. [Google Scholar] [CrossRef]
- Li, D.; Jiang, T.; Lin, W.; Jiang, M. Which has better visual quality: The clear blue sky or a blurry animal? IEEE Trans. Multimed. 2019, 21, 1221–1234. [Google Scholar] [CrossRef]
- Zhang, W.X.; Ma, K.D.; Yan, J.; Deng, D.; Wang, Z. Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 36–47. [Google Scholar] [CrossRef]
- Ciancio, A.; da Costa, A.L.N.T.; Silva, E.A.B.D.; Said, A.; Samadani, R.; Obrador, P. No-reference blur assessment of digital pictures based on multifeature classifiers. IEEE Trans. Image Process. 2011, 20, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Toni, V.; Mikko, N.; Mikko, V.; Pirkko, O.; Jukka, H. CID2013: A database for evaluating no-reference image quality assessment algorithms. IEEE Trans. Image Process. 2015, 24, 390–402. [Google Scholar]
- Deepti, G.; Alan, C.B. Massive online crowd sourced study of subjective and objective picture quality. IEEE Trans. Image Process. 2016, 25, 372–387. [Google Scholar]
- Kim, W.; Kim, C. Saliency detection via textural contrast. Opt. Lett. 2012, 37, 1550–1552. [Google Scholar] [CrossRef]
- Zahra, S.S.; Karim, F. Visual saliency detection via integrating bottom-up and top-down information. Optik 2019, 178, 1195–1207. [Google Scholar]
- Zhang, L.; Shen, Y.; Li, H. VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 2014, 23, 4270–4281. [Google Scholar] [CrossRef]
- Shi, C.; Lin, Y. No reference image sharpness assessment based on global color difference variation. Chin. J. Electron. 2024, 33, 293–302. [Google Scholar] [CrossRef]
- Varga, D. Full-Reference Image Quality Assessment Based on Grünwald–Letnikov Derivative, Image Gradients, and Visual Saliency. Electronics 2022, 11, 559. [Google Scholar] [CrossRef]
- Li, C.; Bovik, A.C.; Wu, X. Blind Image Quality Assessment Using a General Regression Neural Network. IEEE Trans. Neural Netw. 2011, 22, 793–799. [Google Scholar]
- Zhao, M.; Ji, S.; Wei, Z. Risk prediction and risk factor analysis of urban logistics to public security based on PSO-GRNN algorithm. PLoS ONE 2020, 15, e0238443. [Google Scholar] [CrossRef] [PubMed]
- Rahim, H.S.; Farooq, M.S.; Conrad, A.B. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 2006, 15, 3440–3451. [Google Scholar]
- Moorthy, A.K.; Bovik, A.C. Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Trans. Image Process. 2011, 20, 3350–3364. [Google Scholar] [CrossRef]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a ‘completely blind’ image quality analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
Database | Criteria | GRNN | FOA-GRNN | FA-GRNN | PSO-GRNN |
---|---|---|---|---|---|
BID | SROCC | 0.880 | 0.880 | 0.876 | 0.885 |
PLCC | 0.885 | 0.887 | 0.883 | 0.890 |
Database | Blur Images | Subjective Scores | Typical Size | Score Range |
---|---|---|---|---|
BID | 586 | MOS | 1280 × 960 | [0, 5] |
CID2013 | 474 | MOS | 1600 × 1200 | [0, 100] |
CLIVE | 1162 | MOS | 500 × 500 | [0, 100] |
Cluster | Subject luminance (lux) | Subject- Camera Distance (m) | Scene Description | Example Images | Image Set | Motivation |
---|---|---|---|---|---|---|
1 | 2 | 0.5 | Close-up in dark lighting conditions | I–VI | Bar and restaurant setting | |
2 | 100 | 1.5 | Close-up in typical indoor lighting conditions | I–VI | Living room environment, Indoor portrait | |
3 | 10 | 4.0 | Small group in dim lighting conditions | I–VI | Living room environment, group picture | |
4 | 1000 | 1.5 | Studio image | I–IV | Studio image generally used in image quality testing | |
5 | >3400 | 3.0 | Small group in cloudy bright to sunny lighting conditions | I–V | Typical tourist image | |
6 | >3400 | >50 | Close-up in high dynamic range lighting conditions | I–VI | Landscape image | |
7 | >3400 | 3.0 | Small group in cloudy bright to sunny lighting conditions (~3× optical or digital zoom) | VI | General zooming | |
8 | >3400 (outdoors) and <100 (indoors) | 1.5 | Close-up in high dynamic range lighting conditions | V, VI | High dynamic range scene |
Databases | BID [22] | CID2013 [23] | CLIVE [24] | |||
---|---|---|---|---|---|---|
Criteria | PLCC | SROCC | PLCC | SROCC | PLCC | SROCC |
BISHARP [13] | 0.356 | 0.307 | 0.678 | 0.681 | - | - |
BIBLE [12] | 0.392 | 0.361 | 0.698 | 0.687 | 0.515 | 0.427 |
MLV [11] | 0.375 | 0.317 | 0.689 | 0.621 | 0.400 | 0.339 |
GCDV [28] | 0.338 | 0.294 | 0.681 | 0.596 | 0.405 | 0.334 |
RISE [15] | 0.602 | 0.584 | 0.793 | 0.769 | 0.555 | 0.515 |
SR [16] | 0.415 | 0.467 | 0.621 | 0.634 | - | - |
Yu’s CNN [17] | 0.560 | 0.557 | 0.715 | 0.704 | 0.501 | 0.502 |
DIQA [18] | 0.506 | 0.492 | 0.720 | 0.708 | 0.704 | 0.703 |
SSEQ [19] | 0.604 | 0.581 | 0.689 | 0.676 | - | - |
SFA [20] | 0.840 | 0.826 | - | - | 0.833 | 0.812 |
DB-CNN [21] | 0.471 | 0.464 | 0.686 | 0.672 | 0.869 | 0.851 |
DIVINE [33] | 0.506 | 0.489 | 0.499 | 0.477 | 0.558 | 0.509 |
NIQE [34] | 0.471 | 0.469 | 0.693 | 0.633 | 0.478 | 0.421 |
Proposed | 0.890 | 0.885 | 0.924 | 0.913 | 0.873 | 0.867 |
Databases | Feature Value | PLCC | SROCC |
---|---|---|---|
BID | Max | 0.828 | 0.825 |
RC | 0.802 | 0.788 | |
Var | 0.852 | 0.850 | |
Max + RC | 0.846 | 0.844 | |
Max + Var | 0.886 | 0.877 | |
RC + Var | 0.877 | 0.869 | |
Max + RC + Var | 0.890 | 0.885 | |
CID2013 | Max | 0.902 | 0.892 |
RC | 0.843 | 0.828 | |
Var | 0.917 | 0.909 | |
Max + RC | 0.902 | 0.888 | |
Max + Var | 0.925 | 0.915 | |
RC + Var | 0.922 | 0.916 | |
Max + RC + Var | 0.924 | 0.913 | |
CLIVE | Max | 0.834 | 0.821 |
RC | 0.785 | 0.769 | |
Var | 0.851 | 0.858 | |
Max + RC | 0.866 | 0.857 | |
Max + Var | 0.871 | 0.863 | |
RC + Var | 0.861 | 0.855 | |
Max + RC + Var | 0.873 | 0.867 |
Scenarios | SROCC | PLCC | Scenarios | SROCC | PLCC | Scenarios | SROCC | PLCC |
---|---|---|---|---|---|---|---|---|
IS_I_C01 | 0.789 | 0.801 | IS_I_C02 | 0.878 | 0.934 | IS_I_C03 | 0.989 | 0.991 |
IS_II_C01 | 0.709 | 0.860 | IS_II_C02 | 0.781 | 0.745 | IS_II_C03 | 0.841 | 0.934 |
IS_III_C01 | 0.979 | 0.991 | IS_III_C02 | 0.772 | 0.741 | IS_III_C03 | 0.985 | 0.990 |
IS_IV_C01 | 0.908 | 0.890 | IS_IV_C02 | 0.955 | 0.997 | IS_IV_C03 | 0.960 | 0.960 |
IS_V_C01 | 0.902 | 0.890 | IS_V_C02 | 0.968 | 0.990 | IS_V_C03 | 0.993 | 0.999 |
IS_VI_C01 | 0.866 | 0.938 | IS_VI_C02 | 0.928 | 0.937 | IS_VI_C03 | 0.966 | 0.991 |
IS_I_C04 | 0.964 | 0.956 | IS_I_C05 | 0.884 | 0.930 | IS_I_C06 | 0.964 | 0.984 |
IS_II_C04 | 0.968 | 0.948 | IS_II_C05 | 0.877 | 0.836 | IS_II_C06 | 0.775 | 0.733 |
IS_III_C04 | 0.972 | 0.971 | IS_III_C05 | 0.844 | 0.871 | IS_III_C06 | 0.791 | 0.807 |
IS_IV_C04 | 0.908 | 0.968 | IS_IV_C05 | 0.977 | 0.996 | IS_IV_C06 | 0.952 | 0.969 |
IS_VI_C07 | 0.849 | 0.967 | IS_V_C05 | 0.975 | 0.961 | IS_V_C06 | 0.765 | 0.833 |
IS_V_C08 | 0.965 | 0.984 | IS_VI_C08 | 0.804 | 0.968 | IS_VI_C06 | 0.743 | 0.983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Jiang, B.; Shi, C.; Lu, Y.; Lin, Y. An Objective Evaluation Method for Image Sharpness Under Different Illumination Imaging Conditions. Photonics 2024, 11, 1032. https://doi.org/10.3390/photonics11111032
He H, Jiang B, Shi C, Lu Y, Lin Y. An Objective Evaluation Method for Image Sharpness Under Different Illumination Imaging Conditions. Photonics. 2024; 11(11):1032. https://doi.org/10.3390/photonics11111032
Chicago/Turabian StyleHe, Huan, Benchi Jiang, Chenyang Shi, Yuelin Lu, and Yandan Lin. 2024. "An Objective Evaluation Method for Image Sharpness Under Different Illumination Imaging Conditions" Photonics 11, no. 11: 1032. https://doi.org/10.3390/photonics11111032
APA StyleHe, H., Jiang, B., Shi, C., Lu, Y., & Lin, Y. (2024). An Objective Evaluation Method for Image Sharpness Under Different Illumination Imaging Conditions. Photonics, 11(11), 1032. https://doi.org/10.3390/photonics11111032