Novel Application of Quantum Computing for Routing and Spectrum Assignment in Flexi-Grid Optical Networks
Abstract
:1. Introduction
2. Background and Methodology
2.1. Quantum Computing in the Noisy Intermediate-Scale Quantum Era
2.2. Solving Optimization Problems Using Gate-Based Quantum Computers
3. QAOA Applied to Routing and Spectrum Assignment in EONS
3.1. Network Modeling
3.2. Problem Formulation of RSA
- Decision Variables:
- Spectrum capacity (uniqueness constraint): a slot in a link can be allocated to one request at most, defined by
- The objective function:
- Flow conservation: this includes source constraint (ensure that the source node has more outgoing than incoming edges), destination constraint (ensure that the destination node has more incoming than outgoing edges), and path connectivity constraint (ensure that the selected path is connected), formulated as follows:
- Spectrum contiguity: for each request, the slots should be allocated next to each other, represented by
- Allocating the needed slot: for each request, exactly slots need to be allocated, formulated as
3.3. Mapping Process: Quadratic Unconstrained Binary Optimization Formulation (QUBO)
- Decision variables: in this case, the decision variable will be the vector X, which we aim to find. For consistency, we will denote the variable as .
- Flow conservation:
- Spectrum contiguity:
- Allocating the needed slot:
3.4. Equivalent QAOA Ansatz
4. Simulation Results and Discussion
4.1. Case Study and Implementation
4.2. Theoretical Resource Estimation and Analysis
- State : this represents the current state of the network including the network topology information, the spectrum availability distribution (in this part the continuity and contiguity), and the traffic request (number of FSs needed, the source and destination nodes).
- Action : when a traffic request arrives, the DRL agent is to make an action by selecting a routing path and assigning the FSs.
- Reward Function : the reward function gives feedback to the agent based on the action taken. The goal is to maximize cumulative rewards over time. A typical reward function for the RSA problem might combine multiple objectives, such as maximizing the throughput, minimizing the spectrum usage, the interference, and the latency. A typical reward function could look like the following:
- Policy : the policy is what the DRL model learns—it maps states to actions aiming to maximize the expected cumulative reward.
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EONs | Elastic Optical Networks |
RSA | Routing and Spectrum Assignment |
QC | Quantum Computing |
QAOA | Quantum Approximate Optimization Algorithm |
QML | Quantum Machine Learning |
QUBO | Quadratic Unconstrained Binary Optimization |
FS | Frequency Slot |
QoS | Quality of Service |
ILP | Integer Linear Programming |
DRL | Deep Reinforcement Learning |
NISQ | Noisy Intermediate-Scale Quantum |
VQAs | Variational Quantum Algorithms |
COBYLA | Constrained Optimization BY Linear Approximation |
IBM-QASM | IBM Quantum Assembler Simulator |
MDP | Markov Decision Process |
References
- Jinno, M. Elastic Optical Networking: Roles and Benefits in Beyond 100-Gb/s Era. J. Light. Technol. 2017, 35, 1116–1124. [Google Scholar] [CrossRef]
- Chatterjee, B.; Oki, E. Elastic Optical Networks: Fundamentals, Design, Control, and Management; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Chatterjee, B.C.; Sarma, N.; Oki, E. Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial. IEEE Commun. Surv. Tutor. 2015, 17, 1776–1800. [Google Scholar] [CrossRef]
- Wang, J.; Shigeno, M.; Wu, Q. ILP models and improved methods for the problem of routing and spectrum allocation. Opt. Switch. Netw. 2022, 45, 100675. [Google Scholar] [CrossRef]
- Gu, R.; Yang, Z.; Ji, Y. Machine learning for intelligent optical networks: A comprehensive survey. J. Netw. Comput. Appl. 2020, 157, 102576. [Google Scholar] [CrossRef]
- Boutaba, R.; Salahuddin, M.A.; Limam, N.; Ayoubi, S.; Shahriar, N.; Estrada-Solano, F.; Caicedo, O.M. A comprehensive survey on machine learning for networking: Evolution, applications and research opportunities. J. Internet Serv. Appl. 2018, 9, 16. [Google Scholar] [CrossRef]
- Jiao, Y.; Yin, S.; Jin, T.; Liu, L.; Zhao, L.; Huang, S. Reliability-Oriented RSA Combined with Reinforcement Learning in Elastic Optical Networks. In Proceedings of the 2022 20th International Conference on Optical Communications and Networks (ICOCN), Shenzhen, China, 12–15 August 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Hernández-Chulde, C.; Casellas, R.; Martínez, R.; Vilalta, R.; Muñoz, R.M. Experimental evaluation of a latency-aware routing and spectrum assignment mechanism based on deep reinforcement learning. J. Opt. Commun. Netw. 2023, 15, 925–937. [Google Scholar] [CrossRef]
- Urbanucci, L. Limits and potentials of Mixed Integer Linear Programming methods for optimization of polygeneration energy systems. Energy Procedia 2018, 148, 1199–1205. [Google Scholar] [CrossRef]
- Chen, L. Curse of Dimensionality. In Encyclopedia of Database Systems; Springer: Boston, MA, USA, 2009; pp. 545–546. [Google Scholar] [CrossRef]
- Bouchmal, O.; Cimoli, B.; Stabile, R.; Vegas Olmos, J.J.; Tafur Monroy, I. From classical to quantum machine learning: Survey on routing optimization in 6G software defined networking. Front. Commun. Netw. 2023, 4, 1220227. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, N.D.; Nahavandi, S. Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications. IEEE Trans. Cybern. 2020, 50, 3826–3839. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X.; Pan, Y. A study of the routing and spectrum allocation in spectrum-sliced Elastic Optical Path networks. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 1503–1511. [Google Scholar] [CrossRef]
- Steane, A. Quantum computing. Rep. Prog. Phys. 1998, 61, 117. [Google Scholar] [CrossRef]
- Schuld, M.; Sweke, R.; Meyer, J.J. Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys. Rev. A 2021, 103, 032430. [Google Scholar] [CrossRef]
- Nawaz, S.J.; Sharma, S.K.; Wyne, S.; Patwary, M.N.; Asaduzzaman, M. Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future. IEEE Access 2019, 7, 46317–46350. [Google Scholar] [CrossRef]
- Zahedinejad, E.; Zaribafiyan, A. Combinatorial optimization on gate model quantum computers: A survey. arXiv 2017, arXiv:1708.05294. [Google Scholar]
- Bouchmal, O.; Cimoli, B.; Stabile, R.; Olmos, J.J.V.; Monroy, I.T. Quantum-Inspired Network Optimization in 6G: Opportunities, Challenges and Open Research Directions. In Proceedings of the Distributed Computing and Artificial Intelligence, Special Sessions I, 20th International Conference, Guimaraes, Portugal, 12–14 July 2023; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- IBM Research. IBM Makes Quantum Computing Available on IBM Cloud to Accelerate Innovation. 2016. Available online: https://www.prnewswire.com/news-releases/ibm-makes-quantum-computing-available-on-ibm-cloud-to-accelerate-innovation-300262512.html (accessed on 7 July 2024).
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef]
- Zhong, H.S.; Wang, H.; Deng, Y.H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Qin, J.; Wu, D.; Ding, X.; Hu, Y.; et al. Quantum computational advantage using photons. Science 2020, 370, 1460–1463. [Google Scholar] [CrossRef]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [Google Scholar] [CrossRef]
- Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.J.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural networks. Nat. Commun. 2020, 11, 808. [Google Scholar] [CrossRef]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef]
- Schuld, M.; Killoran, N. Quantum Machine Learning in Feature Hilbert Spaces. Phys. Rev. Lett. 2019, 122, 040504. [Google Scholar] [CrossRef]
- Jerbi, S.; Fiderer, L.J.; Poulsen Nautrup, H.; Kübler, J.M.; Briegel, H.J.; Dunjko, V. Quantum machine learning beyond kernel methods. Nat. Commun. 2023, 14, 517. [Google Scholar] [CrossRef]
- Chehimi, M.; Saad, W. Quantum Federated Learning with Quantum Data. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 8617–8621. [Google Scholar] [CrossRef]
- Song, Y.; Wu, Y.; Wu, S.; Li, D.; Wen, Q.; Qin, S.; Gao, F. A quantum federated learning framework for classical clients. Sci. China Phys. Mech. Astron. 2024, 67, 250311. [Google Scholar] [CrossRef]
- Lewis, M.; Glover, F. Quadratic unconstrained binary optimization problem preprocessing: Theory and empirical analysis. Networks 2017, 70, 79–97. [Google Scholar] [CrossRef]
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv 2014, arXiv:1411.4028. [Google Scholar] [CrossRef]
- Gambetta, J. Expanding the IBM Quantum Roadmap to Anticipate the Future of Quantum-Centric Supercomputing. 2022. Available online: https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025 (accessed on 7 July 2024).
- Bertero, F.; Bianchetti, M.; Marenco, J. Integer programming models for the routing and spectrum allocation problem. Top 2018, 26, 465–488. [Google Scholar] [CrossRef]
- Talebi, S.; Alam, F.; Katib, I.; Khamis, M.; Salama, R.; Rouskas, G.N. Spectrum management techniques for elastic optical networks: A survey. Opt. Switch. Netw. 2014, 13, 34–48. [Google Scholar] [CrossRef]
- Xu, L.; Huang, Y.C.; Xue, Y.; Hu, X. Deep Reinforcement Learning-Based Routing and Spectrum Assignment of EONs by Exploiting GCN and RNN for Feature Extraction. J. Light. Technol. 2022, 40, 4945–4955. [Google Scholar] [CrossRef]
- Chen, J.; Huang, H.; Zhang, Z.; Wang, J. Deep Reinforcement Learning with Two-Stage Training Strategy for Practical Electric Vehicle Routing Problem with Time Windows. In Proceedings of the Parallel Problem Solving from Nature—PPSN XVII, Dortmund, Germany, 10–14 September 2022; Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 356–370. [Google Scholar] [CrossRef]
- Coraci, D.; Brandi, S.; Capozzoli, A. Effective pre-training of a deep reinforcement learning agent by means of long short-term memory models for thermal energy management in buildings. Energy Convers. Manag. 2023, 291, 117303. [Google Scholar] [CrossRef]
- Klinkowski, M.; Walkowiak, K. Routing and Spectrum Assignment in Spectrum Sliced Elastic Optical Path Network. IEEE Commun. Lett. 2011, 15, 884–886. [Google Scholar] [CrossRef]
- Wang, R.; Mukherjee, B. Provisioning in Elastic Optical Networks with Non-Disruptive Defragmentation. J. Light. Technol. 2013, 31, 2491–2500. [Google Scholar] [CrossRef]
- Zhang, Y.; Xin, J.; Li, X.; Huang, S. Overview on routing and resource allocation based machine learning in optical networks. Opt. Fiber Technol. 2020, 60, 102355. [Google Scholar] [CrossRef]
- Montanez-Barrera, J.A.; Michielsen, K. Towards a universal QAOA protocol: Evidence of a scaling advantage in solving some combinatorial optimization problems. arXiv 2024, arXiv:2405.09169. [Google Scholar]
- Blekos, K.; Brand, D.; Ceschini, A.; Chou, C.H.; Li, R.H.; Pandya, K.; Summer, A. A review on quantum approximate optimization algorithm and its variants. Phys. Rep. 2024, 1068, 1–66. [Google Scholar] [CrossRef]
Metric | ILP [9,34,38,39] | DRL [12,35,36,37,40] | This Work (QAOA) |
---|---|---|---|
Solution Quality | 100% (optimal) | 90–95% (near-optimal) | 78.8% (can be higher) |
Time-to-Solution | Days to weeks for large networks (50+ nodes) | Days to train, but decisions in real-time | Seconds to minutes (limited by quantum hardware) |
Scalability with Network size | Poor (exponential growth in variables and constraints) | Good after training | Good |
Real-time Adaptability | Poor (requires re-solving for every change) | Moderate to Good (adapts well after training) | Moderate to Good (quantum hardware currently not real-time) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchmal, O.; Cimoli, B.; Stabile, R.; Vegas Olmos, J.J.; Hernandez, C.; Martinez, R.; Casellas, R.; Tafur Monroy, I. Novel Application of Quantum Computing for Routing and Spectrum Assignment in Flexi-Grid Optical Networks. Photonics 2024, 11, 1023. https://doi.org/10.3390/photonics11111023
Bouchmal O, Cimoli B, Stabile R, Vegas Olmos JJ, Hernandez C, Martinez R, Casellas R, Tafur Monroy I. Novel Application of Quantum Computing for Routing and Spectrum Assignment in Flexi-Grid Optical Networks. Photonics. 2024; 11(11):1023. https://doi.org/10.3390/photonics11111023
Chicago/Turabian StyleBouchmal, Oumayma, Bruno Cimoli, Ripalta Stabile, Juan Jose Vegas Olmos, Carlos Hernandez, Ricardo Martinez, Ramon Casellas, and Idelfonso Tafur Monroy. 2024. "Novel Application of Quantum Computing for Routing and Spectrum Assignment in Flexi-Grid Optical Networks" Photonics 11, no. 11: 1023. https://doi.org/10.3390/photonics11111023
APA StyleBouchmal, O., Cimoli, B., Stabile, R., Vegas Olmos, J. J., Hernandez, C., Martinez, R., Casellas, R., & Tafur Monroy, I. (2024). Novel Application of Quantum Computing for Routing and Spectrum Assignment in Flexi-Grid Optical Networks. Photonics, 11(11), 1023. https://doi.org/10.3390/photonics11111023