The Time Response of a Uniformly Doped Transmission-Mode NEA AlGaN Photocathode Applied to a Solar-Blind Ultraviolet Detecting System
Abstract
:1. Introduction
2. Physical Model of AlGaN Photocathode Response Time Calculation
3. Results and Analysis
3.1. Effect of Photoelectron Diffusion Coefficient on the Response Time of the AlGaN Photoemission Layer
3.2. Effect of Different Photoelectron Rear Interface Recombination Rates on the Response Time of the AlGaN Photoemission Layer
3.3. Effect of AlGaN Photoemission Layer Thickness on Response Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, W.Y.; Zhang, Z.W.; Li, Z.M.; Chen, Y.R.; Song, H.; Miao, G.Q.; Fan, F.; Chen., H.F.; Liu, Z.; Jiang., H. High performance back-illuminated MIS structure AlGaN solar-blind ultraviolet photodiodes. J. Mater. Sci. Mater. Electron. 2018, 29, 9077–9082. [Google Scholar] [CrossRef]
- Brown, J.D.; Li, J.; Srinivasan, P.; Matthews, J.; Schetzina, J.F. Solar-Blind AlGaN Heterostructure Photodiodes. MRS Internet J. Nitride Semicond. Res. 2014, 5, 9. [Google Scholar] [CrossRef]
- Monroy, E.; Calle, F.; Pau, J.L.; Munoz, E.; Omnes, F.; Beaumont, B.; Gibart, P. AlGaN-based UV photodetectors. J. Cryst. Growth 2001, 230, 537–543. [Google Scholar] [CrossRef]
- Melby, J.H. Characterization and Modeling of Electrical Response of Electrode Catalyzed Reactions in AIGaN/GaN-Based Gas Sensors. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2013. [Google Scholar]
- Pau, J.L.; Munoz, E.; Monroy, E.; Calleja, E. Solar-blind AlGaN-based UV photodetectors grown on Si (111) substrates. Proc. SPIE—Int. Soc. Opt. Eng. 2002, 4650, 104–110. [Google Scholar]
- Hao, G.; Shi, F.; Cheng, H.; Ren, B.; Chang, B. Photoemission performance of thin graded structure AlGaN photocathode. Appl. Opt. 2015, 54, 2572–2576. [Google Scholar] [CrossRef]
- Tang, G.; Yan, F.; Chen, X. Research on activation mechanism of AlGaN photocathodes in an ultra-high vacuum system. Mater. Sci. Semicond. Process. 2020, 118, 105210. [Google Scholar] [CrossRef]
- Liu, L.; Zhangyang, X.; Lv, Z.; Lu, F.; Tian, J. Enhanced photoemission of field-assisted NEA AlGaN nanoporous array photocathode. Mater. Sci. Eng. 2022, 277, 115606. [Google Scholar] [CrossRef]
- Zhangyang, X.; Liu, L.; Lu, F.; Tian, J.; Cheng, H.; Guo, X. Surface plasmon-enhanced AlGaN heterojunction nanorod array photocathode. Mater. Sci. Eng. 2023, 289, 116277. [Google Scholar] [CrossRef]
- Du, J.; Cheng, H.; Li, Y.; Chen, P.; Zhang, R.; Guo, X.; Zhu, Y.; Miao, Z.; Zhang, Y.; Liu, L. Enhanced photoemission performance of an AlGaN photocathode by a superlattice emission layer. AIP Adv. 2023, 13, 095301. [Google Scholar] [CrossRef]
- Wang, H.; Ji, X.; Hou, D.; Hao, J.; Wang, L.; Sai, Y. Effect of electron lateral diffusion in transmission-mode varied-doping Al0.37Ga0.63N photocathode on resolution. J. Optoelectron. Adv. Mater. 2022, 24, 28–34. [Google Scholar]
- Liu, L.; Zhangyang, X.; Lv, Z.; Lu, F.F.; Tian, J. Solar-blind field-assisted NEA AlGaN heterojunction nanocone array photocathode. J. Appl. Phys. 2021, 130, 135701. [Google Scholar] [CrossRef]
- Lebedev, V.; Cherkashinin, G.; Ecke, G.; Cimalla, I.; Ambacher, O. Space charge limited electron transport in AlGaN photoconductors. J. Appl. Phys. 2007, 101, 7115. [Google Scholar] [CrossRef]
- Guanghui, H.; Junle, L.; Senlin, K. Spectral response characteristics of the transmission-mode aluminum gallium nitride photocathode with varying aluminum composition. Appl. Opt. 2017, 56, 9757. [Google Scholar]
- Hao, G.; Liu, J.; Ke, S. The influence of surface barriers on the photoemission characteristics of AlGaN photocathodes. Optik 2018, 158, 44–52. [Google Scholar] [CrossRef]
- Fu, X.Q.; Li, Y.; Li, Z.M.; Zhang, C.W.; Yue, W.J.; Yang, M.Z. Study of GaN/AlGaN photocathode with variable aluminum AlxGa1−xN material in emission layer. Optik 2018, 158, 363–367. [Google Scholar] [CrossRef]
- Gutierrez, W.A.; Wilson, H.L.; Yee, E.M. GaAs transmission photocathode grown by hybrid epitaxy. Appl. Phys. Lett. 1974, 25, 482–483. [Google Scholar] [CrossRef]
- Hyder, S.B. The film GaAs photocathodes deposited on single crystal sapphire by a modified rf sputtering technique. J. Vac. Sci. Technol. 1971, 8, 228–232. [Google Scholar] [CrossRef]
- Hayfuji, H.; Mizuguchi, K.; Ochi, S.; Murotani, T. Highly uniform grown of GaAs and GaAlAs by large-capacity MOCVD reactor. J. Cryst. Grown 1986, 77, 281–285. [Google Scholar] [CrossRef]
- Riedel, G.J.; Pomeroy, J.W.; Hilton, K.P.; Maclean, J.O.; Wallis, D.J.; Uren, M.J.; Martin, T.; Kuball, M. Nanosecond Timescale Thermal Dynamics of AlGaN/GaN Electronic Devices. IEEE Electron Device Lett. 2008, 29, 416–418. [Google Scholar] [CrossRef]
- Tirado, J.M.; Sanchez-Rojas, J.L.; Izpura, J.I. Trapping Effects in the Transient Response of AlGaN/GaN HEMT Devices. IEEE Trans. Electron Devices 2007, 54, 410–417. [Google Scholar] [CrossRef]
- Zhao, Y.; Donaldson, W. Response analysis on AlGaN metal-semiconductor-metal photodetectors in a perspective of experiment and theory and the persistent photoconductivity effect. J. Mater. Res. 2018, 33, 2627–2636. [Google Scholar] [CrossRef]
- Bazarov, I.V.; Dunham, B.M.; Liu, X.; Virgo, M.; Dabiran, A.M.; Hannon, F.; Sayed, H. Thermal emittance and response time measurements of a GaN photocathode. J. Appl. Phys. 2009, 105, 083715. [Google Scholar] [CrossRef]
- Zhao, Y.; Donaldson, W. Ultrafast UV AlGaN Metal–Semiconductor–Metal Photodetector with a Response Time below 25 ps. IEEE J. Quantum Electron. 2020, 56, 1–7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Li, X.; Jia, T.; Qiu, H.; Li, Y.; Pu, R.; Zhang, Q.; Cheng, H.; Guo, X.; Qiao, J.; et al. The Time Response of a Uniformly Doped Transmission-Mode NEA AlGaN Photocathode Applied to a Solar-Blind Ultraviolet Detecting System. Photonics 2024, 11, 986. https://doi.org/10.3390/photonics11100986
Du J, Li X, Jia T, Qiu H, Li Y, Pu R, Zhang Q, Cheng H, Guo X, Qiao J, et al. The Time Response of a Uniformly Doped Transmission-Mode NEA AlGaN Photocathode Applied to a Solar-Blind Ultraviolet Detecting System. Photonics. 2024; 11(10):986. https://doi.org/10.3390/photonics11100986
Chicago/Turabian StyleDu, Jinjuan, Xiyao Li, Tiantian Jia, Hongjin Qiu, Yang Li, Rui Pu, Quanchao Zhang, Hongchang Cheng, Xin Guo, Jiabin Qiao, and et al. 2024. "The Time Response of a Uniformly Doped Transmission-Mode NEA AlGaN Photocathode Applied to a Solar-Blind Ultraviolet Detecting System" Photonics 11, no. 10: 986. https://doi.org/10.3390/photonics11100986
APA StyleDu, J., Li, X., Jia, T., Qiu, H., Li, Y., Pu, R., Zhang, Q., Cheng, H., Guo, X., Qiao, J., & He, H. (2024). The Time Response of a Uniformly Doped Transmission-Mode NEA AlGaN Photocathode Applied to a Solar-Blind Ultraviolet Detecting System. Photonics, 11(10), 986. https://doi.org/10.3390/photonics11100986