Molybdenum Truncated Cone Arrays with Localized Surface Plasmon Resonance for Surface-Enhanced Raman Scattering Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Hu, Z.; Yang, D.; Xie, S.; Jiang, Z.; Niessner, R.; Haisch, C.; Zhou, H.; Sun, P. Bacteria Detection: From Powerful SERS to Its Advanced Compatible Techniques. Adv. Sci. 2020, 7, 2001739. [Google Scholar] [CrossRef]
- Liu, H.; Gao, X.; Xu, C.; Liu, D. SERS Tags for Biomedical Detection and Bioimaging. Theranostics 2022, 12, 1870–1903. [Google Scholar] [CrossRef]
- Xu, L.; Xie, Y.; Lin, J.; Wu, A.; Jiang, T. Advancements in SERS-Based Biological Detection and Its Application and Perspectives in Pancreatic Cancer. VIEW 2024, 5, 20230070. [Google Scholar] [CrossRef]
- Ott, C.E.; Burns, A.; Sisco, E.; Arroyo, L.E. Targeted Fentanyl Screening Utilizing Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Applied to Authentic Seized Drug Casework Samples. Forensic Chem. 2023, 34, 100492. [Google Scholar] [CrossRef]
- Burr, D.S.; Fatigante, W.L.; Lartey, J.A.; Jang, W.; Stelmack, A.R.; McClurg, N.W.; Standard, J.M.; Wieland, J.R.; Kim, J.-H.; Mulligan, C.C.; et al. Integrating SERS and PSI-MS with Dual Purpose Plasmonic Paper Substrates for On-Site Illicit Drug Confirmation. Anal. Chem. 2020, 92, 6676–6683. [Google Scholar] [CrossRef]
- Li, Q.; Huo, H.; Wu, Y.; Chen, L.; Su, L.; Zhang, X.; Song, J.; Yang, H. Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing. Adv. Sci. 2023, 10, 2202051. [Google Scholar] [CrossRef]
- Lin, C.; Liang, S.; Peng, Y.; Long, L.; Li, Y.; Huang, Z.; Long, N.V.; Luo, X.; Liu, J.; Li, Z.; et al. Visualized SERS Imaging of Single Molecule by Ag/Black Phosphorus Nanosheets. Nano-Micro Lett. 2022, 14, 75. [Google Scholar] [CrossRef]
- Wang, T.; Wang, S.; Cheng, Z.; Wei, J.; Yang, L.; Zhong, Z.; Hu, H.; Wang, Y.; Zhou, B.; Li, P. Emerging Core–Shell Nanostructures for Surface-Enhanced Raman Scattering (SERS) Detection of Pesticide Residues. Chem. Eng. J. 2021, 424, 130323. [Google Scholar] [CrossRef]
- Ong, T.T.X.; Blanch, E.W.; Jones, O.A.H. Surface Enhanced Raman Spectroscopy in Environmental Analysis, Monitoring and Assessment. Sci. Total Environ. 2020, 720, 137601. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. Chem. Interfac. Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Albrecht, M.G.; Creighton, J.A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.-C.; Hu, S.; Yan, S.; Ren, B. Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271. [Google Scholar] [CrossRef]
- Trivedi, D.J.; Barrow, B.; Schatz, G.C. Understanding the Chemical Contribution to the Enhancement Mechanism in SERS: Connection with Hammett Parameters. J. Chem. Phys. 2020, 153, 124706. [Google Scholar] [CrossRef]
- Lombardi, J.R.; Birke, R.L. A Unified Approach to Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2008, 112, 5605–5617. [Google Scholar] [CrossRef]
- Valley, N.; Greeneltch, N.; Van Duyne, R.P.; Schatz, G.C. A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment. J. Phys. Chem. Lett. 2013, 4, 2599–2604. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Auguié, B. Enhancement Factors: A Central Concept during 50 Years of Surface-Enhanced Raman Spectroscopy. ACS Nano 2024, 18, 9773–9783. [Google Scholar] [CrossRef]
- Niu, R.; Gao, F.; Wang, D.; Zhu, D.; Su, S.; Chen, S.; YuWen, L.; Fan, C.; Wang, L.; Chao, J. Pattern Recognition Directed Assembly of Plasmonic Gap Nanostructures for Single-Molecule SERS. ACS Nano 2022, 16, 14622–14631. [Google Scholar] [CrossRef]
- Li, J.; Wuethrich, A.; Sina, A.A.I.; Cheng, H.-H.; Wang, Y.; Behren, A.; Mainwaring, P.N.; Trau, M. A Digital Single-Molecule Nanopillar SERS Platform for Predicting and Monitoring Immune Toxicities in Immunotherapy. Nat. Commun. 2021, 12, 1087. [Google Scholar] [CrossRef]
- Campion, A.; Kambhampati, P. Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 1998, 27, 241–250. [Google Scholar] [CrossRef]
- Xu, T.; Geng, Z. Strategies to Improve Performances of LSPR Biosensing: Structure, Materials, and Interface Modification. Biosens. Bioelectron. 2021, 174, 112850. [Google Scholar] [CrossRef]
- He, M.-Q.; Yu, Y.-L.; Wang, J.-H. Biomolecule-Tailored Assembly and Morphology of Gold Nanoparticles for LSPR Applications. Nano Today 2020, 35, 101005. [Google Scholar] [CrossRef]
- Bonyár, A. Maximizing the Surface Sensitivity of LSPR Biosensors through Plasmon Coupling—Interparticle Gap Optimization for Dimers Using Computational Simulations. Biosensors 2021, 11, 527. [Google Scholar] [CrossRef]
- Chowdhury, A.D.; Nasrin, F.; Gangopadhyay, R.; Ganganboina, A.B.; Takemura, K.; Kozaki, I.; Honda, H.; Hara, T.; Abe, F.; Park, S.; et al. Controlling Distance, Size and Concentration of Nanoconjugates for Optimized LSPR Based Biosensors. Biosens. Bioelectron. 2020, 170, 112657. [Google Scholar] [CrossRef]
- Werner, W.S.; Glantschnig, K.; Ambrosch-Draxl, C. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data. 2009, 38, 1013–1092. [Google Scholar] [CrossRef]
- Zada, A.; Muhammad, P.; Ahmad, W.; Hussain, Z.; Ali, S.; Khan, M.; Khan, Q.; Maqbool, M. Surface Plasmonic-Assisted Photocatalysis and Optoelectronic Devices with Noble Metal Nanocrystals: Design, Synthesis, and Applications. Adv. Funct. Mater. 2020, 30, 1906744. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, H.; Xia Han, X.; Zhao, B. Metal–Semiconductor Heterostructures for Surface-Enhanced Raman Scattering: Synergistic Contribution of Plasmons and Charge Transfer. Mater. Horiz. 2021, 8, 370–382. [Google Scholar] [CrossRef]
- Huang, Q.; Wei, H.; Marr, L.C.; Vikesland, P.J. Direct Quantification of the Effect of Ammonium on Aerosol Droplet pH. Environ. Sci. Technol. 2021, 55, 778–787. [Google Scholar] [CrossRef]
- Craig, R.L.; Peterson, P.K.; Nandy, L.; Lei, Z.; Hossain, M.A.; Camarena, S.; Dodson, R.A.; Cook, R.D.; Dutcher, C.S.; Ault, A.P. Direct Determination of Aerosol pH: Size-Resolved Measurements of Submicrometer and Supermicrometer Aqueous Particles. Anal. Chem. 2018, 90, 11232–11239. [Google Scholar] [CrossRef]
- Shen, Y.; Han, Y.; Zhan, R.; Chen, X.; Wen, S.; Huang, W.; Sun, F.; Wei, Y.; Chen, H.; Wu, J.; et al. Pyramid-Shaped Single-Crystalline Nanostructure of Molybdenum with Excellent Mechanical, Electrical, and Optical Properties. ACS Appl. Mater. Interfaces 2020, 12, 24218–24230. [Google Scholar] [CrossRef]
- Cui, T.; Shen, Y.; Cheng, A.; Liu, Z.; Jia, S.; Tang, S.; Shao, L.; Chen, H.; Deng, S. Highly Efficient Molybdenum Nanostructures for Solar Thermophotovoltaic Systems: One-Step Fabrication of Absorber and Design of Selective Emitter. Chem. Eng. J. 2024, 487, 150389. [Google Scholar] [CrossRef]
- Cui, T.; Shen, Y.; Cheng, A.; Zhan, R.; Zheng, Z.; Tian, B.; Shi, J.; Ke, Y.; Shao, L.; Chen, H.; et al. A Low-Loss Molybdenum Plasmonic Waveguide: Perfect Single-Crystal Preparation and Subwavelength Grating Optimization. Nanophotonics 2023, 12, 4185–4193. [Google Scholar] [CrossRef]
- Saji, V.S.; Lee, C.-W. Molybdenum, Molybdenum Oxides, and Their Electrochemistry. ChemSusChem 2012, 5, 1146–1161. [Google Scholar] [CrossRef]
- Sun, Y.-T.; Tan, X.; Lei, L.-L.; Li, J.; Jiang, Y.-M. Revisiting the Effect of Molybdenum on Pitting Resistance of Stainless Steels. Tungsten 2021, 3, 329–337. [Google Scholar] [CrossRef]
- KffiiLLOVA, M.M.; Nomerovannaya, L.V.; Noskov, M.M. Optical Properties of Molybdenum Single Crystals. Soviet Phys. JETP 1971, 33. [Google Scholar]
- Liu, Y.; Luo, F. Large-Scale Highly Ordered Periodic Au Nano-Discs/Graphene and Graphene/Au Nanoholes Plasmonic Substrates for Surface-Enhanced Raman Scattering. Nano Res. 2019, 12, 2788–2795. [Google Scholar] [CrossRef]
- Han, L.; Zhou, Y.; Tan, Z.; Zhu, H.; Hu, Y.; Ma, X.; Zheng, F.; Feng, F.; Wang, C.; Liu, W. Confined Target-Triggered Hot Spots for In Situ SERS Analysis of Intranuclear Genotoxic Markers. Anal. Chem. 2023, 95, 6312–6322. [Google Scholar] [CrossRef]
- Liman, G.; Yildiz, E.; Ilhan, H.; Cetin, A.E.; Demirel, G. Hot-Spot Engineering Through Soft Actuators for Surface-Enhanced Raman Spectroscopy (SERS) Applications. Adv. Opt. Mater. 2021, 9, 2100009. [Google Scholar] [CrossRef]
- Chirumamilla, M.; Chirumamilla, A.; Yang, Y.; Roberts, A.S.; Kristensen, P.K.; Chaudhuri, K.; Boltasseva, A.; Sutherland, D.S.; Bozhevolnyi, S.I.; Pedersen, K. Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars. Adv. Opt. Mater. 2017, 5, 1700552. [Google Scholar] [CrossRef]
- Liu, B.; Bai, C.; Zhao, D.; Liu, W.-L.; Ren, M.-M.; Liu, Q.-Z.; Yang, Z.-Z.; Wang, X.-Q.; Duan, X.-L. Novel Ferroferric Oxide/Polystyrene/Silver Core–Shell Magnetic Nanocomposite Microspheres as Regenerable Substrates for Surface-Enhanced Raman Scattering. Appl. Surf. Sci. 2016, 364, 628–635. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Cui, T.; Liu, Z.; Lin, Y.; Tang, S.; Shao, L.; Chen, H.; Shen, Y.; Deng, S. Molybdenum Truncated Cone Arrays with Localized Surface Plasmon Resonance for Surface-Enhanced Raman Scattering Application. Photonics 2024, 11, 950. https://doi.org/10.3390/photonics11100950
Wang C, Cui T, Liu Z, Lin Y, Tang S, Shao L, Chen H, Shen Y, Deng S. Molybdenum Truncated Cone Arrays with Localized Surface Plasmon Resonance for Surface-Enhanced Raman Scattering Application. Photonics. 2024; 11(10):950. https://doi.org/10.3390/photonics11100950
Chicago/Turabian StyleWang, Cheng, Tao Cui, Zhe Liu, Yu Lin, Shuai Tang, Lei Shao, Huanjun Chen, Yan Shen, and Shaozhi Deng. 2024. "Molybdenum Truncated Cone Arrays with Localized Surface Plasmon Resonance for Surface-Enhanced Raman Scattering Application" Photonics 11, no. 10: 950. https://doi.org/10.3390/photonics11100950
APA StyleWang, C., Cui, T., Liu, Z., Lin, Y., Tang, S., Shao, L., Chen, H., Shen, Y., & Deng, S. (2024). Molybdenum Truncated Cone Arrays with Localized Surface Plasmon Resonance for Surface-Enhanced Raman Scattering Application. Photonics, 11(10), 950. https://doi.org/10.3390/photonics11100950