Research Progress on Carrier-Free Phase-Retrieval Receivers
Abstract
:1. Introduction
2. Principle of CF-PR Receivers
3. Modified CF-PR Receiver Scheme
3.1. Improve the Performance of the CF-PR with a Reduced Number of Iterations and Better Steady Accuracy
3.1.1. Parallel Alternating Projections
3.1.2. Enhanced CF-PR Algorithms
CF-PR Scheme with Selective Phase Resetting (PR-PR)
Joint Optimization of CF-PR and Forward Error Correction (FEC) Overheads
CF-PR Scheme with Adaptive Intensity Transformation (AIT-PR)
Algorithm 1 AIT-PR | |
1. Initialize 2. | ◊ Initialize phase |
3. for from 1 to 4. ◊ AIT | |
5. | ◊ Reconstruct the filed |
6. | ◊ Propagate back to Tx |
7. | ◊ RRC shaping |
8. | ◊ Down-sample to 1 SPS |
9. | ◊ Pilot constraint |
10. | ◊ Modulus constraint |
11. | ◊ Up-sample to 2 SPS |
12. | ◊ RRC shaping |
13. | ◊ To projection plane |
14. | ◊ Intensity update |
15. | ◊ Propagate back to Rx |
16. end for | |
17. returns |
Weighted Decision-Enhanced PR Receiver with Adaptive Intensity Transformation (WD-AIT-PR)
Algorithm 2 WD-AIT-PR | |
1. Initialize 2. | ◊ Initialize phase |
3. for from 1 to 4. ◊ AIT | |
5. | ◊ Reconstruct the filed |
6. | ◊ Propagate back to Tx |
7. | ◊ RRC shaping |
8. | ◊ Down-sample to 1 SPS |
9. | ◊ Normalization |
10. if | Introduce WD |
constraint | |
end if | |
11. | ◊ Pilot constraint |
12. | ◊ Up-sample to 2 SPS |
13. | ◊ RRC shaping |
14. | ◊ To projection plane |
15. | ◊ Intensity update |
16. 17. end for | ◊ Propagate back to Rx |
18. returns |
Leveraging Digital Up-Sampling
3.2. Reduce the Complexity of Each PR Iteration
3.3. CF-PR Receiver with Polarization and Spatial Mode Diversity
3.3.1. CF-PR Receiver with Polarization Mode Diversity
3.3.2. CF-PR Receiver with Both Polarization and Spatial Mode Diversity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kikuchi, K. Fundamentals of Coherent Optical Fiber Communications. J. Light. Technol. 2016, 34, 157–179. [Google Scholar] [CrossRef]
- Cvijetic, M. Coherent and Nonlinear Lightwave Communications; Artech House: Boston, MA, USA, 2016; ISBN 13-978-0890065907. [Google Scholar]
- Batagelj, B.; Janyani, V.; Tomazic, S. Research challenges in optical communications towards 2020 and beyond. Inf. MIDEM 2014, 44, 177–184. [Google Scholar]
- Ip, E.M.; Kahn, J.M. Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing. J. Light. Technol. 2009, 28, 502–519. [Google Scholar] [CrossRef]
- Uzunidis, D.; Logothetis, M.; Stavdas, A.; Hillerkuss, D.; Tomkos, I. Fifty Years of Fixed Optical Networks Evolution: A Survey of Architectural and Technological Developments in a Layered Approach. Telecom 2022, 3, 619–674. [Google Scholar] [CrossRef]
- Savory, S.J.; Gavioli, G.; Killey, R.I.; Bayvel, P. Electronic compensation of chromatic dispersion using a digital coherent receiver. Opt. Express 2007, 15, 2120–2126. [Google Scholar] [CrossRef] [PubMed]
- Winzer, J.; Essiambr, R. Advanced Optical Modulation Formats. Proc. IEEE 2006, 94, 952–985. [Google Scholar] [CrossRef]
- Zhong, K.; Zhou, X.; Huo, J.; Yu, C.; Lu, C.; Lau, A.P.T. Digital Signal Processing for Short-Reach Optical Communications: A Review of Current Technologies and Future Trends. J. Light. Technol. 2018, 36, 377–400. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, Y.; Cheng, Z.; Yin, L.; Hu, W. Spectrally sliced heterodyne coherent receiver with halved electrical bandwidth. Chin. Opt. Lett. 2022, 20, 090601-1–090601-6. [Google Scholar] [CrossRef]
- Che, D.; Sun, C.; Shieh, W. Maximizing the spectral efficiency of Stokes vector receiver with optical field recovery. Opt. Express 2018, 26, 28976–28981. [Google Scholar] [CrossRef]
- Gao, Y.; Lau, A.P.T.; Yan, S.; Lu, C. Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems. Opt. Express 2011, 22, 21717–21729. [Google Scholar] [CrossRef]
- Faruk, M.S.; Kikuchi, K. Adaptive frequency-domain equalization in digital coherent optical receivers. Opt. Express 2011, 13, 12789–12798. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Zhang, K.; Li, L.; He, H.; Hu, W. 50 Gbps PAM-4 Over Up to 80-km Transmission With C-Band DML Enabled by Post-Equalizer. IEEE Photonics Technol. Lett. 2020, 32, 643–646. [Google Scholar] [CrossRef]
- Mecozzi, A.; Antonelli, C.; Shtaif, M. Kramers–Kronig coherent receiver. Optica 2016, 3, 1220–1227. [Google Scholar] [CrossRef]
- Chen, X.; Chandrasekhar, S.; Olsson, S.; Adamiecki, A.; Winzer, P. Impact of O/E front-end frequency response on Kramers-Kronig receivers and its compensation. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; p. Mo3F.5. [Google Scholar]
- Bo, T.; Kim, H. Toward. practical Kramers-Kronig receiver: Resampling, performance, and implementation. J. Light. Technol. 2019, 37, 461–469. [Google Scholar] [CrossRef]
- Patel, R.K.; Alimi, I.A.; Muga, N.J.; Pinto, A.N. Optical signal phase retrieval with low complexity DC-value method. J. Light. Technol. 2020, 38, 4205–4212. [Google Scholar] [CrossRef]
- Li, X.; O’Sullivan, M.; Xing, Z.; Alam, M.; Mousa-Pasandi, E.M.; Plant, V.D. Asymmetric self-coherent detection. Opt. Express 2021, 29, 25412–25427. [Google Scholar] [CrossRef]
- Shieh, W.; Sun, C.; Ji, H. Carrier-assisted differential detection. Light Sci. Appl. 2020, 9, 18. [Google Scholar] [CrossRef]
- Che, D.; Li, A.; Chen, X.; Hu, Q.; Wang, Y.; Shieh, W. Stokes Vector Direct Detection for Linear Complex Optical Channels. J. Light. Technol. 2015, 33, 678–684. [Google Scholar] [CrossRef]
- Peng, W.R.; Wu, X.; Feng, K.M.; Arbab, V.R.; Shamee, B.; Yang, J.Y.; Christen, L.C.; Willner, A.E.; Chi, S. Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique. Opt. Express 2009, 17, 9099–9111. [Google Scholar] [CrossRef]
- Zou, K.; Zhu, Y.; Zhang, F.; Chen, Z. Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle subcarrier modulation and direct detection. Opt. Lett. 2016, 12, 2767–2770. [Google Scholar] [CrossRef]
- Li, Z.; Erkılınç, M.; Shi, K.; Sillekens, E.; Galdino, L.; Thomsen, B.; Bayvel, P.; Killey, R. SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation. J. Light. Technol. 2017, 35, 1887–1893. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, Z.; Zhu, Y.; Zhang, Y.; Ji, H.; Yang, Y.; Qiao, G.; Liu, L.; Wang, S.; Liang, J. Machine Learning for Self-Coherent Detection Short-Reach Optical Communications. Photonics 2023, 10, 1001. [Google Scholar] [CrossRef]
- Karar, A.S.; Falou, A.R.E.; Barakat, J.M.H.; Gürkan, Z.N.; Zhong, K. Recent Advances in Coherent Optical Communications for Short-Reach: Phase Retrieval Methods. Photonics 2023, 10, 308. [Google Scholar] [CrossRef]
- Che, D.; Shieh, W. Polarization Demultiplexing for Stokes Vector Direct Detection. J. Light. Technol. 2016, 34, 754–760. [Google Scholar] [CrossRef]
- Kikuchi, K. Quantum Theory of Noise in Stokes Vector Receivers and Application to Bit Error Rate Analysis. J. Light. Technol. 2020, 38, 3164–3172. [Google Scholar] [CrossRef]
- Qian, D.; Cvijetic, N.; Hu, J.; Wang, T. 108 Gb/s OFDMA-PON with Polarization Multiplexing and Direct Detection. J. Light. Technol. 2009, 28, 484–493. [Google Scholar] [CrossRef]
- Ji, H.; Li, J.; Li, X.; Dong, S.; Xu, Z.; Su, Y.; Shieh, W. Complementary Polarization-Diversity Coherent Receiver for Self-Coherent Homodyne Detection with Rapid Polarization Tracking. J. Light. Technol. 2022, 40, 2773–2779. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, Y.; Zhuge, Q.; Hu, W. Dual-Carrier-Assisted Phase Retrieval for Polarization Division Multiplexing. J. Light. Technol. 2022, 40, 7297–7306. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, Y.; Jiang, H.; Zhuge, Q.; Hu, W. Optical Field Recovery in Jones Space. J. Light. Technol. 2022, 41, 66–74. [Google Scholar] [CrossRef]
- Che, D.; Sun, C.; Shieh, W. Single-Channel 480-Gb/s Direct Detection of POL-MUX IQ Signal Using Single-Sideband Stokes Vector Receiver. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Zhu, Y.; Jiang, M.; Zhang, F. Direct detection of polarization multiplexed single sideband signals with orthogonal offset carriers. Opt. Express 2018, 26, 15887–15898. [Google Scholar] [CrossRef]
- Fukuda, H.; Yamada, K.; Tsuchizawa, T.; Watanabe, T.; Shinojima, H.; Itabashi, S. Silicon photonic circuit with polarization diversity. Opt. Express 2008, 16, 4872–4880. [Google Scholar] [CrossRef] [PubMed]
- Charles, L.; Villeneuve, B.; Zhang, Z.; McGhan, D.; Sun, H.; O’Sullivan, M. WDM performance and PMD tolerance of a coherent 40-Gbit/s dual-polarization QPSK transceiver. J. Light. Technol. 2008, 26, 168–175. [Google Scholar]
- Peng, W.; Feng, K.; Willner, A.E. Direct-detected polarization division multiplexed OFDM systems with self-polarization diversity. In Proceedings of the LEOS 2008—21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Newport Beach, CA, USA, 9–13 November 2008; pp. 71–72. [Google Scholar]
- Nazarathy, M.; Agmon, A. Doubling direct-detection data rate by polarization multiplexing of 16-QAM without active polarization control. Opt. Express 2013, 26, 31998–32012. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; O’Sullivan, M.; Xing, Z.; Alam, M.S.; Hoang, T.; Xiang, M.; Zhu, M.; Zhang, J.; Elfiky, E.; Plant, D.V. Asymmetric direct detection of orthogonal offset carriers assisted polarization multiplexed single-sideband signals. Opt. Express 2020, 28, 3226–3236. [Google Scholar] [CrossRef]
- Antonelli, C.; Mecozzi, A.; Shtaif, M.; Chen, X.; Chandrasekhar, S.; Winzer, P.J. Polarization multiplexing with the Kramers-Kronig receiver. J. Light. Technol. 2017, 24, 5418–5424. [Google Scholar] [CrossRef]
- Che, D.; Sun, C.; Shieh, W. Direct detection of the optical field beyond single polarization mode. Opt. Express 2018, 26, 3368–3380. [Google Scholar] [CrossRef]
- Hoang, T.M.; Sowailem, Y.S.M.; Zhuge, Q.; Xing, Z.; Morsy-Osman, M.; El-Fiky, E.; Fan, S.; Xiang, M.; Plant, D.V. Single wavelength 480 Gb/s direct detection over 80km SSMF enabled by Stokes vector Kramers Kronig transceiver. Opt. Express 2017, 25, 33534–33542. [Google Scholar] [CrossRef]
- Che, D.; Sun, C.; Shieh, W. Optical field recovery in stokes space. J. Light. Technol. 2019, 37, 451–460. [Google Scholar] [CrossRef]
- Chen, H.; Fontaine, N.K.; Gené, J.M.; Ryf, R.; Neilson, D.T.; Raybon, G. Full-field, carrier-less, polarization diversity, direct detection receiver based on phase retrieval. In Proceedings of the 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland, 22–26 September 2019; pp. 1–3. [Google Scholar]
- Chen, H.; Alvarado, Z.; Juan, C.; Huang, H.; Fontaine, N.K.; Ryf, R.; Neilson, D.T.; Amezcua-Correa, R. Mode-Multiplexed Full-Field Reconstruction Using Direct and Phase Retrieval Detection. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Huang, H.; Chen, H.; Huang, Y.; Li, Z.; Zhang, Q.; Fontaine, N.K.; Ryf, R.; Song, Y. Phase Retrieval Receiver using Parallel Alternative Projections for Coherent Communications. In Proceedings of the 2020 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 10–15 May 2020; pp. 1–2. [Google Scholar]
- Chen, H.; Huang, H.; Fontaine, N.K.; Ryf, R. Phase retrieval with fast convergence employing parallel alternative projections and phase reset for coherent communications. Opt. Lett. 2020, 45, 1188–1191. [Google Scholar] [CrossRef]
- Chen, H.; Fontaine, N.K.; Gene, J.M.; Ryf, R.; Neilson, D.T.; Raybon, G. Dual Polarization Full-Field Signal Waveform Reconstruction Using Intensity Only Measurements for Coherent Communications. J. Light. Technol. 2020, 38, 2587–2597. [Google Scholar] [CrossRef]
- Dorrer, C. Characterization of nonlinear phase shifts by use of the temporal transport-of-intensity equation. Opt. Lett. 2005, 30, 3237–3239. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado-Laborde, C.; Carrascosa, A.; Pérez-Millán, P.; Díez, A.; Cruz, J.L.; Andres, M.V. Phase recovery by using optical fiber dispersion. Opt. Lett. 2014, 39, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M. A phase retrieval method using dispersion for direct detection of biased QAM signals. In Proceedings of the 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 13–18 May 2018; pp. 1–2. [Google Scholar]
- Gerchberg, R.W. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Burvall, A.; Lundström, U.; Takman, P.A.C.; Larsson, D.H.; Hertz, H.M. Phase retrieval in X-ray phase-contrast imaging suitable for tomography. Opt. Express 2011, 19, 10359–10376. [Google Scholar] [CrossRef] [PubMed]
- Shechtman, Y.; Eldar, Y.C.; Cohen, O.; Chapman, H.N.; Miao, J.; Segev, M. Phase retrieval with application to optical imaging: A contemporary overview. IEEE Signal Process. Mag. 2015, 32, 87–109. [Google Scholar] [CrossRef]
- Jaganathan, K.; Eldar, Y.C.; Hassibi, B. Phase retrieval: An overview of recent developments. arXiv 2015, arXiv:1510.07713. [Google Scholar]
- Fienup, J.R. Phase retrieval algorithms: A comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef]
- Fienup, J.R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. A 1987, 4, 118–123. [Google Scholar] [CrossRef]
- Fienup, J.R. Phase-retrieval algorithms for a complicated optical system. Appl. Opt. 1993, 32, 1737–1746. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Sivokon, V.P. Phase retrieval from a set of intensity measurements: Theory and experiment. J. Opt. Soc. Am. A 1992, 9, 1515–1524. [Google Scholar] [CrossRef]
- Fatadin, I.; Savory, J.S. Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation. Opt. Express 2010, 18, 16273–16278. [Google Scholar] [CrossRef] [PubMed]
- Malekiha, M.; Tselniker, I.; Plant, V.D. Chromatic dispersion mitigation in long-haul fiber-optic communication networks by sub-band partitioning. Opt. Express 2015, 23, 32654–32663. [Google Scholar] [CrossRef] [PubMed]
- Ryf, R.; Randel, S.; Gnauck, A.H.; Bolle, C.; Sierra, A.; Mumtaz, S.; Esmaeelpour, M.; Burrows, E.C.; Essiambre, R.; Winzer, P.J.; et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Light. Technol. 2012, 30, 521–531. [Google Scholar] [CrossRef]
- Chen, H.; Fontaine, N.K.; Essiambre, R.; Huang, H.; Mazur, M.; Ryf, R.; Neilson, D.T. Space-Time Diversity Phase Retrieval Receiver. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–10 June 2021; p. Th4D.3. [Google Scholar]
- Smith, B.P.; Farhood, A.; Hunt, A.; Kschischang, F.R.; Lodge, J. Staircase Codes: FEC for 100 Gb/s OTN. J. Light. Technol. 2012, 30, 110–117. [Google Scholar] [CrossRef]
- Chen, B.; Huang, H.; Chen, H.; Lei, Y.; Fontaine, N.K.; Ryf, R.; Zhang, Q.; Song, Y. Joint Optimization of Phase Retrieval and Forward Error Correcting for Direct Detection Receiver. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020; pp. 1–4. [Google Scholar]
- Xiang, M.; Zhou, P.; Ye, B.; Fu, S.; Xu, O.; Li, J.; Peng, D.; Wang, Y.; Qin, Y. Adaptive intensity transformation-based phase retrieval with high accuracy and fast convergence. Opt. Lett. 2021, 46, 3215–3218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, X.; Sun, L.; Liu, J.; Lau, A.P.T.; Guo, C.; Yu, S.; Lu, C. C-band 120-Gb/s PAM-4 transmission over 50-km SSMF with improved weighted decision-feedback equalizer. Opt. Express 2021, 29, 41622–41633. [Google Scholar] [CrossRef]
- Zhou, P.; Xiang, M.; Zhou, G.; Li, J.; Li, J.; Fu, S.; Qin, Y. Weighted Decision Enhanced Phase-Retrieval Receiver with Adaptive Intensity Transformation. In Proceedings of the 2022 European Conference on Optical Communication (ECOC), Basel, Switzerland, 18–22 September 2022; p. We5.27. [Google Scholar]
- Zhou, P.; Xiang, M.; Cheng, W.; Ma, Y.; Wu, R.; Zhou, G.; Li, J.; Li, J.P.; Zhang, C.; Fu, S.; et al. Weighted Decision Enhanced Phase-Retrieval Receiver with Adaptive Intensity Transformation. J. Light. Technol. 2023, 41, 6208–6217. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, Y.; Zhuge, Q.; Hu, W. Dual-Polarization Direct Detection with Jones Space Field Recovery. In Proceedings of the 2022 Asia Communications and Photonics Conference (ACP), Shenzhen, China, 5–8 November 2022; pp. 763–767. [Google Scholar]
- Wu, Q.; Zhu, Y.; Zhuge, Q.; Hu, W. Carrier-Assisted Phase Retrieval with Multiple Projections. In Proceedings of the 2022 Asia Communications and Photonics Conference (ACP), Shenzhen, China, 5–8 November 2022; pp. 465–468. [Google Scholar]
- Huang, H.; Chen, H.; Huang, Y.; Fontaine, N.K.; Ryf, R.; Song, Y. Carrier-less phase retrieval receiver leveraging digital up-sampling. Opt. Lett. 2020, 45, 6070–6073. [Google Scholar] [CrossRef]
- Ma, Y.; Xiang, M.; Cheng, W.; Wu, R.; Zhou, P.; Zhou, P.; Li, J.; Li, J.; Fu, S.; Qin, Y. Digital subcarrier multiplexing-enabled carrier-free phase-retrieval receiver. Adv. Photonics Nexus 2023, 2, 046004. [Google Scholar] [CrossRef]
- Huang, H.; Chen, H.; Fontaine, N.K.; Song, Y.; Mazur, M.; Dallachiesa, L.; Veen, D.V.; Houtsma, V.; Ryf, R.; Neilson, D.T. Simplified Phase Retrieval Receiver Employing Transmission Fiber for Alternative Projection. In Proceedings of the 2022 European Conference on Optical Communication (ECOC), Basel, Switzerland, 18–22 September 2022; pp. 1–4. [Google Scholar]
- Madsen, C.K.; Lenz, G.; Bruce, A.J.; Capuzzo, M.A.; Gomez, L.T.; Nielsen, T.N.; Brener, I. Multistage dispersion compensator using ring resonators. Opt. Lett. 1999, 24, 1555–1557. [Google Scholar] [CrossRef]
- Lachowicz, S.; Pfleiderer, H.-J. Fast evaluation of nonlinear functions using FPGAs. Adv. Radio Sci. 2008, 6, 233–237. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, J.; Tang, J.; Jin, W.; Giddings, R.; Qiu, K. Data-Aided Iterative Algorithms for Linearizing IM/DD Optical Transmission Systems. J. Light. Technol. 2021, 39, 2864–2872. [Google Scholar] [CrossRef]
- Zheng, Z.; Cui, N.; Xu, H.; Zhang, X.; Zhang, W.; Xi, L.; Fang, Y.; Li, L. Window-split structured frequency domain kalman equalization scheme for large PMD and ultra-fast RSOP in an optical coherent PDM-QPSK system. Opt. Express 2018, 26, 7211–7226. [Google Scholar] [CrossRef] [PubMed]
- Morsy-Osman, M.; Chagnon, M.; Zhuge, Q.; Xu, X.; E. Mousa-Pasandi, M.; A. El-Sahn, Z.; V. Plant, D. Ultrafast and low overhead training symbol based channel estimation in coherent M-QAM single-carrier transmission systems. Opt. Express 2012, 20, B171–B180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Xiang, M.; Gan, X.; Wei, C.; Cheng, W.; Zhou, G.; Li, J.; Li, J.; Fu, S.; Qin, Y. Research Progress on Carrier-Free Phase-Retrieval Receivers. Photonics 2024, 11, 54. https://doi.org/10.3390/photonics11010054
Ma Y, Xiang M, Gan X, Wei C, Cheng W, Zhou G, Li J, Li J, Fu S, Qin Y. Research Progress on Carrier-Free Phase-Retrieval Receivers. Photonics. 2024; 11(1):54. https://doi.org/10.3390/photonics11010054
Chicago/Turabian StyleMa, Yunhe, Meng Xiang, Xiaoxue Gan, Can Wei, Wenzhuo Cheng, Gai Zhou, Jilong Li, Jianping Li, Songnian Fu, and Yuwen Qin. 2024. "Research Progress on Carrier-Free Phase-Retrieval Receivers" Photonics 11, no. 1: 54. https://doi.org/10.3390/photonics11010054
APA StyleMa, Y., Xiang, M., Gan, X., Wei, C., Cheng, W., Zhou, G., Li, J., Li, J., Fu, S., & Qin, Y. (2024). Research Progress on Carrier-Free Phase-Retrieval Receivers. Photonics, 11(1), 54. https://doi.org/10.3390/photonics11010054