An Efficient Design Method for a Metasurface Polarizer with High Transmittance and Extinction Ratio
Abstract
:1. Introduction
2. Design of the Metasurface Polarizer
3. Design Methodology Based on a Tandem Network
3.1. The Structural Framework of Neural Networks
3.2. Construction of the Data Sets
4. Experimentation and Analysis
4.1. Forward Prediction
4.2. Inverse Design
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.G.; Dong, F.L.; Cheng, T.; Qian, K.M.; Qiu, K.; Zhang, Q.C.; Chu, W.G.; Wu, X.P. Electron Beam Lithographic Pixelated Micropolarizer Array for Real-Time Phase Measurement. Chin. Phys. Lett. 2014, 31, 114208. [Google Scholar] [CrossRef]
- Gao, S.K.; Mondal, S.B.; Zhu, N.; Liang, R.G.; Achilefu, S.; Gruev, V. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system. J. Biomed. Opt. 2015, 20, 016018. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.; Gruev, V. Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters. Opt. Express 2012, 20, 22997–23012. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.C.; Longhi, S.; Barelli, M.; Mazzanti, A.; Mongeot, F.B.; Valle, G.D. Plasmon hybridization engineering in self-organized anisotropic metasurfaces. Nano Res. 2018, 11, 3943–3956. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, C.Y.; Yue, W.J.; Li, Y.; Zhang, C.W.; Kan, H.; Li, C.; Lee, S.S.; Choi, D.Y. Efficient All-Dielectric Diatomic Metasurface for Linear Polarization Generation and 1-Bit Phase Control. ACS Appl. Mater. Interfaces 2021, 13, 14497–14506. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Chang, B.D.; Wei, Q.S.; Huang, L.L.; Guan, X.W.; Bozhevolnyi, S.I. Versatile Polarization Generation and Manipulation Using Dielectric Metasurfaces. Laser Photonics Rev. 2020, 14, 2000116. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef]
- Wan, W.Q.; Wen, Q.; Pu, D.L.; Li, R.B.; Wang, C.H.; Hu, Y.Q.; Duan, H.G.; Guo, L.J.; Chen, L.S. Holographic Sampling Display Based on Metagratings. iScience 2020, 23, 100773. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.Z.; Liao, T.D.; Cui, X.D. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface. Opt. Commun. 2018, 411, 93–100. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Arbouet, A.; Girard, C.; Muskens, O.L. Deep learning in nano-photonics: Inverse design and beyond. Photonics Res. 2021, 9, B182–B200. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, M.K.; Fan, J.A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 2021, 6, 679–700. [Google Scholar] [CrossRef]
- Qiu, T.S.; Shi, X.; Wang, J.; Li, Y.; Qu, S.; Cheng, Q.; Cui, T.; Sui, S. Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design. Adv. Sci. 2019, 6, 1900128. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.C.; Wang, D.S.; Qin, J.; Li, J.; Ye, H.; Zhang, Z.G.; Chen, X.; Zhang, M.; Boucouvalas, A.C. Physical Information-Embedded Deep Learning for Forward Prediction and Inverse Design of Nanophotonic Devices. J. Light. Technol. 2021, 39, 6498–6508. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, Z.X.; Wang, J.K.; Zhou, J.; Zhang, M. Prediction of metasurface spectral response based on a deep neural network. Opt. Lett. 2022, 47, 5092–5095. [Google Scholar] [CrossRef] [PubMed]
- Tanriover, I.; Hadibrata, W.; Scheuer, J.; Aydin, K. Neural networks enabled forward and inverse design of reconfigurable metasurfaces. Opt. Express 2021, 29, 27219–27227. [Google Scholar] [CrossRef]
- Deng, W.Q.; Xu, Z.J.; Wang, J.H.; Lv, J.W. Long short-term memory neural network for directly inverse design of nanofin metasurface. Opt. Lett. 2022, 47, 3239–3242. [Google Scholar] [CrossRef]
- Liu, D.J.; Tan, Y.X.; Khoram, E.; Yu, Z.F. Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures. ACS Photonics 2018, 5, 1365–1369. [Google Scholar] [CrossRef]
- Liu, K.Z.; Sun, C.S. Metasurface design with a complex residual neural network. Appl. Opt. 2023, 62, 1200–1205. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Muskens, O.L. Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures. Nano Lett. 2020, 20, 329–338. [Google Scholar] [CrossRef]
- Xu, Z.J.; Dong, Y.; Tseng, C.K.; Hu, T.; Tong, J.C.; Zhong, Q.Z.; Li, N.X.; Sim, L.; Lai, K.H.; Lin, Y.; et al. CMOS-compatible all-Si metasurface polarizing bandpass filters on 12-inch wafers. Opt. Express 2019, 27, 26060–26069. [Google Scholar] [CrossRef]
- Sezgin, A.; Čtvrtlík, R.; Václavek, L.; Tomáštík, J.; Nožka, L.; Menşur, E.; Türküz, S. Optical, structural and mechanical properties of TiO2 and TiO2-ZrO2 thin films deposited on glass using magnetron sputtering. Mater. Today Commun. 2023, 35, 106334. [Google Scholar] [CrossRef]
- Shafiq, M.; Gu, Z. Deep Residual Learning for Image Recognition: A Survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Lu, Y.; Qin, X.J.; Fan, H.Y.; Lai, T.T.; Li, Z.Y. WBC-Net: A white blood cell segmentation network based on UNet++ and ResNet. Appl. Soft. Comput. 2021, 101, 107006. [Google Scholar] [CrossRef]
- Ou, X.F.; Yan, P.C.; Zhang, Y.M.; Tu, B.; Zhang, G.Y.; Wu, J.H.; Li, W.J. Moving Object Detection Method via ResNet-18 With Encoder–Decoder Structure in Complex Scenes. IEEE Access 2019, 7, 108152–108160. [Google Scholar] [CrossRef]
- Ding, L.; Zheng, K.; Lin, D.; Chen, Y.X.; Liu, B.; Li, J.S.; Bruzzone, L. MP-ResNet: Multipath Residual Network for the Semantic Segmentation of High-Resolution PolSAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; He, Y.; Zhu, H.; Wang, H. An Efficient Design Method for a Metasurface Polarizer with High Transmittance and Extinction Ratio. Photonics 2024, 11, 53. https://doi.org/10.3390/photonics11010053
Wang S, He Y, Zhu H, Wang H. An Efficient Design Method for a Metasurface Polarizer with High Transmittance and Extinction Ratio. Photonics. 2024; 11(1):53. https://doi.org/10.3390/photonics11010053
Chicago/Turabian StyleWang, Shuning, Yanlin He, Hangwei Zhu, and Haoxuan Wang. 2024. "An Efficient Design Method for a Metasurface Polarizer with High Transmittance and Extinction Ratio" Photonics 11, no. 1: 53. https://doi.org/10.3390/photonics11010053
APA StyleWang, S., He, Y., Zhu, H., & Wang, H. (2024). An Efficient Design Method for a Metasurface Polarizer with High Transmittance and Extinction Ratio. Photonics, 11(1), 53. https://doi.org/10.3390/photonics11010053