Fe2O3 Nanoparticle-Based Q-Switched Pulse Fiber Laser
Abstract
:1. Introduction
2. Fabrication of Fe2O3-Based SA
3. Fe2O3 Nonlinear Optical Properties
4. Fe2O3 Structural Properties
5. Q-Switched EDFL Configuration
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Xu, Y.; Chen, N.K.; Shy, S.; Chui, H.C. In-situ depth measurement of laser micromachining. Photonics 2021, 8, 493. [Google Scholar] [CrossRef]
- Evangelatos, C.; Tsaknakis, G.; Bakopoulos, P.; Papadopoulos, D.; Avdikos, G.; Papayannis, A.; Tzeremes, G. Actively Q-switched multisegmented Nd:YAG laser pumped at 885 nm for remote sensing. IEEE Photonics Technol. Lett. 2014, 26, 1890–1893. [Google Scholar] [CrossRef]
- Adachi, S.; Koyamada, Y. Analysis and design of Q-switched erbium-doped fiber lasers and their application to OTDR. J. Light. Technol. 2002, 20, 1506–1511. [Google Scholar] [CrossRef]
- Cannarozzo, G.; Del Re, C.; Negosanti, F.; Bennardo, S.; Amoruso, G.F.; Nisticò, S.P.; Bennardo, L. Q-switched Nd:YAG laser to manage hyperpigmentation in Asians: A multicenter study. Cosmetics 2023, 10, 44. [Google Scholar] [CrossRef]
- Al-Hiti, A.S.; Hassan, H.; Yasin, M.; Harun, S.W. Passively Q-switched 2 µm fiber laser with WO3 saturable absorber. Opt. Fiber Technol. 2023, 75, 103193. [Google Scholar] [CrossRef]
- Chen, X.; Wang, N.; He, C.; Lin, X. Development of all-fiber nanosecond oscillator using actively Q-switched technologies and modulators. Opt. Laser Technol. 2023, 157, 108709. [Google Scholar] [CrossRef]
- Wood, R.M. Laser-Induced Damage of Optical Materials; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Zalkepali, N.U.H.H.; Awang, N.A.; Ghosh, B.K.; Mohamad, K.A.; Alias, A.; Mahmud, N.N.H.E.N.; Zamri, A.Z.M.; Muhammad, N.A.M. Tunable performance of indium tin oxide-zinc oxide as Q-switcher. Optik 2023, 281, 170852. [Google Scholar] [CrossRef]
- Shang, X.; Xu, N.; Zhang, H.; Li, D. Nonlinear photoresponse of high damage threshold titanium disulfide nanocrystals for Q-switched pulse generation. Opt. Laser Technol. 2022, 151, 107988. [Google Scholar] [CrossRef]
- Chhowalla, M.; Liu, Z.; Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586. [Google Scholar] [CrossRef]
- Peng, H.J.; Li, Z.Y.; Tsay, S.Y.; Song, Y.F.; Zhang, H.; Lin, J.H. Wavelength tunable Q-switched Er-doped fiber laser based on ZrSe2. Opt. Laser Technol. 2022, 147, 107598. [Google Scholar] [CrossRef]
- Shang, X.; Guo, L.; Zhang, H.; Li, D.; Yue, Q. Passive mode-locked Er-doped fiber laser pulse generation based on titanium disulfide saturable absorber. Front. Inf. Technol. Electron. Eng. 2021, 22, 756–766. [Google Scholar] [CrossRef]
- Ahmad, H.; Azmy, N.F.; Yusoff, N.; Reduan, S.A.; Aidit, S.N.; Bayang, L.; Samion, M.Z. MoTe2-PVA as saturable absorber for passively Q-switched thulium-doped fluoride and erbium-doped fiber laser. Optik 2021, 243, 167157. [Google Scholar] [CrossRef]
- He, J.; Lu, H.; Tao, L.; Zhao, Y.; Zheng, Z.; Zhou, B. Novel two-dimensional semi-metallic NiTe2 based saturable absorber for ultrafast mode-locked fiber laser. Infrared Phys. Technol. 2022, 123, 104195. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, F.; Chen, B.; Zhao, Y.; Cui, N.; Sun, D.; Liu, S.; Zhang, Y.; Zhang, H. Nonlinear optical property and mid-infrared Q-switched laser application at 2.8 μm of PtSe2 material. Opt. Laser Technol. 2021, 139, 106983. [Google Scholar] [CrossRef]
- Sui, Z.; Yang, F.; Han, Y.; Fan, W.; Li, S.; Bai, C.; Lu, C.; Zhang, W.; Wang, G.; Fu, S.; et al. Large energy mode-locked phenomenon based on ZrS2 in Er-doped fiber laser. Opt. Laser Technol. 2023, 157, 108725. [Google Scholar] [CrossRef]
- Haris, H.; Batumalay, M.; Tan, S.J.; Markom, A.M.; Muhammad, A.R.; Harun, S.W.; Hasnan, M.M.I.M.; Saad, I. Mode-locked YDFL using topological insulator bismuth selenide nanosheets as the saturable absorber. Crystals 2022, 12, 489. [Google Scholar] [CrossRef]
- Wang, T.; Yu, Q.; Guo, K.; Shi, X.; Kan, X.; Xu, Y.; Wu, J.; Zhang, K.; Zhou, P. Sb2Te3 topological insulator for 52 nm wideband tunable Yb-doped passively Q-switched fiber laser. Front. Inf. Technol. Electron. Eng. 2021, 22, 287–295. [Google Scholar] [CrossRef]
- Haris, H.; Muhammad, A.R.; Tan, S.J.; Markom, A.M.; Harun, S.W.; Megat Hasnan, M.M.I.; Saad, I. Generation of Kelly and dip type sidebands soliton employing topological insulator (Bi2Te3) as saturable absorber. Infrared Phys. Technol. 2022, 123, 104154. [Google Scholar] [CrossRef]
- Kou, L.; Ma, Y.; Sun, Z.; Heine, T.; Chen, C. Two-dimensional topological insulators: Progress and prospects. J. Phys. Chem. Lett. 2017, 8, 1905–1919. [Google Scholar] [CrossRef]
- Yang, J.; Hu, J.; Luo, H.; Li, J.; Liu, J.; Li, X.; Liu, Y. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 μm. Photonics Res. 2020, 8, 70–77. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Han, Y.; Chen, E.; Guo, P.; Zhang, W.; An, M.; Pan, Z.; Xu, Q.; Guo, X.; et al. High-performance γ-MnO2 dual-core, pair-hole fiber for ultrafast photonics. Ultrafast Sci. 2023, 3, 6. [Google Scholar] [CrossRef]
- Ahmed, M.H.M.; Yusoff, N.M.; Abdullah, C.A.C.; Alresheedi, M.T.; Rosli, N.S.; Talib, Z.A.; Mahdi, M.A. Nanosized titanium dioxide saturable absorber for soliton mode-locked thulium-doped fiber laser. Results Phys. 2021, 31, 104930. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, H.N.; Zhang, C.; Li, Z.; Sheng, Y.Q.; Li, C.H.; Bao, X.H.; Man, B.Y.; Jiao, Y.; Jiang, S.Z. Indium tin oxide nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber laser. Opt. Mater. Express 2017, 7, 3494–3502. [Google Scholar] [CrossRef]
- Al-Hayali, S.K.M.; Mohammed, D.Z.; Khaleel, W.A.; Al-Janabi, A.H. Aluminum oxide nanoparticles as saturable absorber for C-band passively Q-switched fiber laser. Appl. Opt. 2017, 56, 4720–4726. [Google Scholar] [CrossRef]
- Xu, C.Y.; Xu, Y.T.; Jing, Y.Y.; Wu, H.D.; Hu, H.F.; Zhang, H.; Jin, L.; Zou, Y.G.; Ma, X.H. Output characteristics regulation of Q-switched fiber laser by Fe3O4 nanoparticle-polyimide film. Opt. Mater. 2021, 119, 111302. [Google Scholar] [CrossRef]
- Hashimoto, T.; Yamada, T.; Yoko, T. Third-order nonlinear optical properties of sol–gel derived α-Fe2O3, γ-Fe2O3, and Fe3O4 thin films. J. Appl. Phys. 1996, 80, 3184–3190. [Google Scholar] [CrossRef]
- Seo, O.; Tayal, A.; Kim, J.; Song, C.; Chen, Y.; Hiroi, S.; Katsuya, Y.; Ina, T.; Sakata, O.; Ikeya, Y.; et al. Tuning of structural, optical band gap, and electrical properties of room-temperature-grown epitaxial thin films through the Fe2O3:NiO ratio. Sci. Rep. 2019, 9, 4304. [Google Scholar] [CrossRef]
- Xing, G.; Jiang, J.; Ying, J.Y.; Ji, W. Fe3O4-Ag nanocomposites for optical limiting: Broad temporal response and low threshold. Opt. Express 2010, 18, 6183–6190. [Google Scholar] [CrossRef]
- Ban, X.; Sun, P.; Qyyum, A.; Li, X.; Song, Z.; Zhong, M.; Little, B.E.; Zhao, W. Fe3O4 nanoparticle-enabled Q-switched pulse generation in fiber laser. Opt. Fiber Technol. 2022, 71, 102909. [Google Scholar] [CrossRef]
- Pang, L.; Song, C.; Lv, R.; Chen, Z.; Liu, S.; Wu, R.; Lv, Y.; Liu, W. High stable polarization-insensitive Er-doped Q-switched fiber laser with iron oxide nanoparticles as saturable absorber. Opt. Laser Technol. 2019, 113, 379–383. [Google Scholar] [CrossRef]
- Li, N.; Jia, H.; Guo, M.; Zhang, J.; Zhang, W.Y.; Guo, Z.X.; Li, M.X.; Jia, Z.X.; Qin, G.S. Broadband Fe3O4 nanoparticles saturable absorber for Q-switched fiber lasers. Opt. Fiber Technol. 2021, 61, 102421. [Google Scholar] [CrossRef]
- Muhammad, N.A.M.; Awang, N.A.; Basri, H. Recent advancements review in zinc oxide and titanium dioxide saturable absorber for ultrafast pulsed fiber laser. Optik 2023, 283, 170855. [Google Scholar] [CrossRef]
- Xu, B.; Jin, Z.; Shi, L.; Zhang, H.; Liu, Q.; Qin, P.; Jiang, K.; Wang, J.; Tang, W.; Xia, W. Two types of ultrafast mode-locking operations from an Er-doped fiber laser based on germanene nanosheets. Front. Optoelectron. 2023, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Husin, S.A.S.; Muhammad, F.D.; Abdullah, C.A.C.; Ribut, S.H.; Zulkifli, M.Z.; Mahdi, M.A. Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser. Chin. Phys. B 2019, 28, 084207. [Google Scholar] [CrossRef]
- Doedel, E.J.; Krauskopf, B.; Pando Lambruschini, C.L. A numerical bifurcation study of a basic model of two coupled lasers with saturable absorption. Eur. Phys. J. Spec. Top. 2014, 223, 2847–2856. [Google Scholar] [CrossRef]
- Doedel, E.J.; Pando, L.C.L. Isolas of periodic passive Q-switching self-pulsations in the three-level:two-level model for a laser with a saturable absorber. Phys. Rev. E 2011, 84, 056207. [Google Scholar] [CrossRef] [PubMed]
- Pisarchik, A.N.; Kir’yanov, A.V.; Barmenkov, Y.O.; Jaimes-Reátegui, R. Dynamics of an erbium-doped fiber laser with pump modulation: Theory and experiment. J. Opt. Soc. Am. B 2005, 22, 2107–2114. [Google Scholar] [CrossRef]
- Otupiri, R.; Garbin, B.; Broderick, N.G.R.; Krauskopf, B. Excitability in an all-fiber laser with a saturable absorber section. J. Opt. Soc. Am. B 2021, 38, 1695–1701. [Google Scholar] [CrossRef]
- Degnan, J.J. Optimization of passively Q-switched lasers. IEEE J. Quantum Electron. 1995, 31, 1890–1901. [Google Scholar] [CrossRef]
- Ahmad, H.; Muhammad, F.D.; Zulkifli, M.Z.; Harun, S.W. Graphene-oxide-based saturable absorber for all-fiber Q-switching with a simple optical deposition technique. IEEE Photonics J. 2012, 4, 2205–2213. [Google Scholar] [CrossRef]
- Mao, D.; Cui, X.; Zhang, W.; Li, M.; Feng, T.; Du, B.; Lu, H.; Zhao, J. Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles. Photonics Res. 2017, 5, 52–56. [Google Scholar] [CrossRef]
- Mao, D.; Cui, X.; He, Z.; Lu, H.; Zhang, W.; Wang, L.; Zhuang, Q.; Hua, S.; Mei, T.; Zhao, J. Broadband polarization-insensitive saturable absorption of Fe2O3 nanoparticles. Nanoscale 2018, 10, 21219–21224. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Mou, C.; Xu, L.; Wang, S.; Pu, S.; Zeng, X. Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber. Appl. Phys. Express 2016, 9, 042701. [Google Scholar] [CrossRef]
- Cheng, P.; Du, Y.; Han, M.; Shu, X. Mode-locked and Q-switched mode-locked fiber laser based on a ferroferric-oxide nanoparticles saturable absorber. Opt. Express 2020, 28, 13177–13186. [Google Scholar] [CrossRef]
- Mohammed, D.Z.; Khaleel, W.A.; Al-Janabi, A.H. Tunable Q-switched erbium doped fiber laser based on metal transition oxide saturable absorber and refractive index characteristic of multimode interference effects. Opt. Laser Technol. 2017, 97, 106–110. [Google Scholar] [CrossRef]
- Yao, J.; Jiang, X.; Wang, A.; Wang, J.; Chen, R.; Zhang, J.; Zhan, Q. Wavelength switchable Q-switched fiber laser based on Fe3O4 nanoparticles. Optik 2021, 243, 167279. [Google Scholar] [CrossRef]
SA | Integration Method | Repetition Rate Range (kHz) | Pulse Width Range (µs) | Pump Power Range (mW) | Pulse Energy Range (nJ) | Ref. |
---|---|---|---|---|---|---|
Fe3O4 | NaCMC–Fe3O4 thin film | 8.3–13.9 | 14.8–10.5 | 62–130 | 15.0–93.6 | [32] |
Fe3O4 | Fe3O4–PVA thin film | 8.5–28.0 | 23.5–6.0 | 25–150 | 20.0–71.0 | [42] |
Fe2O3 | Fe2O3–PVA thin film | 6.5–28.0 | 9.7–2.0 | 30–125 | 7.7–53.2 | [43] |
Fe3O4 | Deposition of magnetic fluid | 7.8–33.3 | 20.0–3.2 | 15–110 | 12.1–23.8 | [44] |
Fe3O4 | Deposition of magnetic fluid | 12.5–19.1 | 20.4–14.3 | 105–225 | 225.0–235.5 | [45] |
Fe3O4 | Deposition of magnetic fluid | 25.0–80.0 | 7.4–2.7 | 80–342 | 20.6–78.2 | [46] |
Fe3O4 | Bubble-poking method | 3.7–57.5 | 40.4–5.7 | 50–658 | 21.0–126.0 | [47] |
Fe2O3 | Tapping Fe2O3 powder-gel | 9.9–22.5 | 38.4–13.8 | 50–174 | 15.8–36.9 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, F.D.; Chyi, J.L.Y.; Mohd Asran, A.N.; Alresheedi, M.T.; Ng, E.K.; Mahdi, M.A. Fe2O3 Nanoparticle-Based Q-Switched Pulse Fiber Laser. Photonics 2023, 10, 995. https://doi.org/10.3390/photonics10090995
Muhammad FD, Chyi JLY, Mohd Asran AN, Alresheedi MT, Ng EK, Mahdi MA. Fe2O3 Nanoparticle-Based Q-Switched Pulse Fiber Laser. Photonics. 2023; 10(9):995. https://doi.org/10.3390/photonics10090995
Chicago/Turabian StyleMuhammad, Farah Diana, Josephine Liew Ying Chyi, Anom Nazirah Mohd Asran, Mohammed Thamer Alresheedi, Eng Khoon Ng, and Mohd Adzir Mahdi. 2023. "Fe2O3 Nanoparticle-Based Q-Switched Pulse Fiber Laser" Photonics 10, no. 9: 995. https://doi.org/10.3390/photonics10090995
APA StyleMuhammad, F. D., Chyi, J. L. Y., Mohd Asran, A. N., Alresheedi, M. T., Ng, E. K., & Mahdi, M. A. (2023). Fe2O3 Nanoparticle-Based Q-Switched Pulse Fiber Laser. Photonics, 10(9), 995. https://doi.org/10.3390/photonics10090995