Design of a Large-Format Low-Light Imaging System Based on the RGB Filter Wheel
Abstract
:1. Introduction
2. Principles of the System Design
2.1. Main Technical Indicators
- Minimum illuminance: 0.01 lux.
- Ground pixel resolution: ≤0.5 m (@5 km).
- Imaging swath width: 2 km × 2 km (@5 km).
- Spectral range: visible light, RGB.
- Weight: ≤10 kg.
2.2. System Working Principle
2.3. Optical System
2.4. Imaging Performance Estimation
2.4.1. Calculation of Swath Width
2.4.2. Exposure Time Estimation
2.4.3. Signal-to-Noise Ratio (SNR) Estimation
3. RGB Filter Wheel Design
4. Optical Stitching of the Reflective Prism
5. Mechanical Configuration of the System
6. Experimental Verification and Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ke-Cong, A.I. Development and prospect of low-light-level(LLL) night vision technology. J. Appl. Opt. 2006, 27, 303–307. [Google Scholar]
- Tian, J.S. New Development of Low Light Level Imaging Sensor Technology. Infrared Technol. 2013, 39, 527–537. [Google Scholar]
- Jin, W.Q.; Wang, L.X.; Zhao, Y.M.; Shi, S.M.; Wang, X. Developments of image processing algorithms for color night vision. Infrared Laser Eng. 2008, 37, 147–150. [Google Scholar]
- Wu, H.; Tao, S.; Zhang, L.; Zhang, J. Tricolor acquisition and true color images fusion method under low illumination condition. J. Appl. Opt. 2016, 37, 673–679. [Google Scholar]
- Tang, H.; Zhu, H.; Fei, L.; Wang, T.; Cao, Y.; Xie, C. Low-Illumination Image Enhancement Based on Deep Learning Techniques: A Brief Review. Photonics 2023, 10, 198. [Google Scholar] [CrossRef]
- Qian, X.; Wang, Y.; Wang, B. Effective contrast enhancement method for color night vision. Infrared Phys. Technol. 2012, 55, 130–136. [Google Scholar] [CrossRef]
- Qian, X.; Han, L.; Wang, Y.; Wang, B. Color contrast enhancement for color night vision based on color mapping. Infrared Phys. Technol. 2013, 57, 36–41. [Google Scholar] [CrossRef]
- Qadir, H.A. Enhancing thermal video using a public database of images. In Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2014; SPIE: Bellingham, WC, USA, 2014. [Google Scholar]
- Jorden, P.R.; Morris, D.G.; Pool, P.J. Technology of large focal planes of CCDs. In Proceedings of the SPIE—The International Society for Optical Engineering, Denver, CO, USA, 2 August 2004; Volume 5167, pp. 72–82. [Google Scholar]
- Shi, L. Research on a Mechanical Interleaving Stitching Method of CCDs for Remote Sensing Camera. Infrared 2009, 30, 12–15. [Google Scholar]
- Rogalski, A. Progress in focal plane array technologies. Prog. Quantum Electron. 2012, 36, 342–473. [Google Scholar] [CrossRef]
- LI, Z.; Wang, Z.; Wu, K. Optical assembly of CCD focal plane for space camera. Opt. Precis. Eng. 2000, 8, 213–216. [Google Scholar]
- Li, F.; Zhang, X.; Cai, W.; Chang, J.; Gao, L. Parameter Calculation of Splitting Mirrors in Optical-Butting Focal Plane. Acta Opt. Sin. 2020, 40, 1308001. [Google Scholar]
- Guo, J.; Gong, D.; Zhu, L.; Sun, J.; Shao, M. Calculation of overlapping pixels in interleaving assembly of CCD focal plane of mapping camera. Opt. Precis. Eng. 2013, 21, 1251–1257. [Google Scholar]
- Liu, Q.; Liu, L.; Deng, Y.; Song, J. Apparent distance theory revision for low-light-level night vision system based on noise factor. Opt. Quantum Electron. 2017, 49, 249. [Google Scholar] [CrossRef]
- Lu, C.; Liu, C.; Shao, M.; Wu, Z.; Jiang, C.; Cao, J.; Chen, T. Design and Performance Analysis of the Highly Sensitive Deep Vacuum Cooling sCMOS Imaging System for Highly Sensitive Detection of Space Targets. Photonics 2023, 10, 819. [Google Scholar] [CrossRef]
- Tang, X.; Yao, L. Design of optical filters for three primary colors. Laser Technol. 2014, 38, 274–277. [Google Scholar]
- Sun, Y.; Lou, C.; Jiang, Z.; Zhou, H. Experimental research of representative wavelengths of tricolor for color CCD camera. J. Huazhong Univ. Sci. Technol. 2009, 37, 108–111. [Google Scholar]
- Marks, D.L. Close-up imaging using microcamera arrays for focal plane synthesis. Opt. Eng. 2011, 50, 33205. [Google Scholar] [CrossRef]
- Lu, H.Y.; Liu, Y.; Guo, Y.F. Computation of overlapping pixels of mechanical assembly CCD focal planes in remote sensing cameras. Opt. Eng. 2012, 20, 1041–1047. [Google Scholar]
- Jia, X.Z.; Jin, G. Design and Precision measurement of TDICCD Focal Plane for Space Camera. In Proceedings of the 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy, Xiamen, China, 15 October 2012. [Google Scholar]
- Chen, X.; Lv, Q. Microbolometric theoretical output responsivity analysis for focal plane array. Opt. Eng. 2015, 54, 63105. [Google Scholar] [CrossRef]
- Ge, M.; Xu, Y.; Shen, H.; Liu, W. Multiple degrees of freedom mechanical interleaving stitching method of CCDs for aero-camera. Infrared Laser Eng. 2015, 44, 923–928. [Google Scholar]
Parameter | Value |
---|---|
Active array size | 2048 × 2048 |
Pixel size | 11 × 11 μm |
Full well capacity | 91 Ke |
Peak QE | 95%@560 nm |
Read noise | 1.6 e(RMS) |
Dark current | 0.2 e/pixel/s@20 °C |
Dynamic range | 93 dB |
Project | Index |
---|---|
Focus | 110 mm |
FOV angle | 23.02° × 23.02° |
F-number | 2–20 |
Working wavelength | 450–690 nm |
MTF@40 lp/mm | ≥0.40 |
Distortion | ≤3.5% |
Back working distance | 105 mm |
Flight Altitude | Flight Speed | Observation Mode | Maximum Exposure Time |
---|---|---|---|
5 km | 200 km/h | Vertical downward view | 4.5 ms |
2 km | 200 km/h | Slant-forward view of a target at a distance of 5 km | 11.2 ms |
1 km | 200 km/h | Slant-forward view of a target at a distance of 5 km | 22.5 ms |
Environmental Illuminance (lux) | R-Channel Image | G-Channel Image | B-Channel Image | Fused Image |
---|---|---|---|---|
0.01 | ||||
100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Yang, H.; Song, X.; Ma, Y.; Chen, W.; Zhang, G. Design of a Large-Format Low-Light Imaging System Based on the RGB Filter Wheel. Photonics 2023, 10, 953. https://doi.org/10.3390/photonics10080953
Peng J, Yang H, Song X, Ma Y, Chen W, Zhang G. Design of a Large-Format Low-Light Imaging System Based on the RGB Filter Wheel. Photonics. 2023; 10(8):953. https://doi.org/10.3390/photonics10080953
Chicago/Turabian StylePeng, Jianwei, Hongtao Yang, Xiaodong Song, Yingjun Ma, Weining Chen, and Guangdong Zhang. 2023. "Design of a Large-Format Low-Light Imaging System Based on the RGB Filter Wheel" Photonics 10, no. 8: 953. https://doi.org/10.3390/photonics10080953
APA StylePeng, J., Yang, H., Song, X., Ma, Y., Chen, W., & Zhang, G. (2023). Design of a Large-Format Low-Light Imaging System Based on the RGB Filter Wheel. Photonics, 10(8), 953. https://doi.org/10.3390/photonics10080953