Fiber Coupled High Power Nd:YAG Laser for Nondestructive Laser Cleaning
Abstract
1. Introduction
2. Experimental Setup
Laser Resonator and Amplifier System Configuration
3. Theoretical Analysis of Laser Resonator
4. Results and Discussion
4.1. Laser Performance of the LD Side-Pumped AO Q-Switched Nd:YAG Laser System
4.2. Comparison of Thermal Control Coating Removal between Nd:YAG and Fiber Laser Cleaning Machine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madhukar, Y.K.; Mullick, S.; Shukla, D.K.; Kumar, S.; Nath, A.K. Effect of laser operating mode in paint removal with a fiber laser. Appl. Surf. Sci. 2013, 264, 892–901. [Google Scholar] [CrossRef]
- Zhu, G.D.; Xu, Z.H.; Jin, Y.; Chen, X.; Yang, L.J.; Xu, J.; Shan, D.B.; Chen, Y.B.; Guo, B. Mechanism and application of laser cleaning: A review. Opt. Laser. Eng. 2022, 157, 107130. [Google Scholar] [CrossRef]
- Razab, M.; Noor, A.M.; Jaafar, M.S.; Abdullah, N.H.; Suhaimi, F.M.; Mohamed, M.; Adam, N.; Yusuf, N. A review of incorporating Nd:YAG laser cleaning principal in automotive industry. J. Radiat. Res. Appl. Sci. 2018, 11, 393–402. [Google Scholar] [CrossRef]
- Chen, T.; Wang, W.J.; Tao, T.; Pan, A.F.; Mei, X.S. Multi-scale micro-nano structures prepared by laser cleaning assisted laser ablation for broadband ultralow reflectivity silicon surfaces in ambient air. Appl. Surf. Sci. 2020, 509, 145182. [Google Scholar] [CrossRef]
- Li, W.Q.; Su, X.; Gu, J.Y.; Jin, Y.; Xu, J.; Guo, B. Removal Mechanisms and Microstructure Characteristics of Laser Paint Stripping on Aircraft Skin Surface. Photonics 2023, 10, 96. [Google Scholar] [CrossRef]
- Gao, K.; Xu, J.J.; Zhu, Y.; Zhang, Z.Y.; Zeng, Q.S. Study on the Technology and Mechanism of Cleaning Architectural Aluminum Formwork for Concrete Pouring by High Energy and High Repetition Frequency Pulsed Laser. Photonics 2023, 10, 242. [Google Scholar] [CrossRef]
- Fang, C.H.; Hu, T.; Pu, Z.H.; Li, P.; Wu, T.; Jiang, J.B.; Sun, A.Q.; Zhang, Y. Effect of Laser Cleaning Parameters on Surface Filth Removal of Porcelain Insulator. Photonics 2023, 10, 269. [Google Scholar] [CrossRef]
- Yue, L.Y.; Wang, Z.B.; Li, L. Modeling and simulation of laser cleaning of tapered micro-slots with different temporal pulses. Opt. Laser Technol. 2013, 45, 533–539. [Google Scholar] [CrossRef]
- Shi, T.Y.; Wang, C.M.; Mi, G.Y.; Yan, F. A study of microstructure and mechanical properties of aluminum alloy using laser cleaning. J. Manuf. Process. 2019, 42, 60–66. [Google Scholar] [CrossRef]
- Tian, Z.; Lei, Z.L.; Chen, Y.B.; Chen, C.; Zhang, R.C.; Chen, X.; Bi, J.; Sun, H.R. Inhibition Effectiveness of Laser-Cleaned Nanostructured Aluminum Alloys to Sulfate-reducing Bacteria Based on Superwetting and Ultraslippery Surfaces. ACS Appl. Bio Mater. 2020, 3, 6131–6144. [Google Scholar] [CrossRef]
- Wei, P.Y.; Chen, Z.H.; Wang, D.; Zhang, R.N.; Li, X.Y.; Zhang, F.; Sun, K.L.; Lei, Y.C. Effect of laser cleaning on mechanical properties of laser lap welded joint of SUS310S stainless steel and 6061 aluminum alloy. Mater. Lett 2021, 291, 129549. [Google Scholar] [CrossRef]
- Wazen, P. 80 W average power of Q-switched ND:YAG laser with optical fibre beam delivery for laser cleaning application. J. Cult. Herit. 2000, 1, S125–S128. [Google Scholar] [CrossRef]
- Choubey, A.; Vishwakarma, S.C.; Vachhani, D.M.; Singh, R.; Misra, P.; Jain, R.K.; Arya, R.; Upadhyaya, B.N.; Oak, S.M. Study and development of 22 kW peak power fiber coupled short pulse Nd:YAG laser for cleaning applications. Opt. Laser. Eng. 2014, 62, 69–79. [Google Scholar] [CrossRef]
- Ouyang, D.Q.; Chen, Y.W.; Liu, M.Q.; Wu, X.; Yang, Q.G.; Xu, F.H.; Zhong, M.R.; Lue, Q.T.; Ruan, S.C. 310 W picosecond laser based on Nd:YVO4 and Nd:YAG rod amplifiers. Opt. Laser Technol. 2022, 148, 107668. [Google Scholar] [CrossRef]
- Furuta, K.; Kojima, T.; Fujikawa, S.; Nishimae, J. Diode-pumped 1 kW Q-switched Nd: YAG rod laser with high peak power and high beam quality. Appl. Opt. 2005, 44, 4119–4122. [Google Scholar] [CrossRef]
- Nicklaus, K.; Hoefer, M.; Hoffmann, D.; Luttmann, J.; Wester, R.; Poprawe, R. MOPA with kW average power and multi MW peak power: Experimental results, theoretical modeling and scaling limits. Solid State Lasers XV Technol. Devices 2006, 6100, 610016. [Google Scholar]
- Wang, Y.B.; Zhang, Z.Y.; Liang, H.; Qu, S.C.; Gao, J.C.; Lin, X.C. Fiber coupled 1 kW repetitively acousto-optic Q-switched cw-pumped Nd:YAG rod laser. Opt. Laser Technol. 2019, 116, 139–143. [Google Scholar] [CrossRef]
- Yang, D.W.; Wang, Y.; Ren, Y. Fiber-coupled high-power diode-pumped solid-state lasers for laser cleaning. Solid State Lasers XXIX Technol. Devices 2020, 11259, 112590T. [Google Scholar]
- Guo, L.; Yang, Y.L.; Xu, H.P.; Kong, H.; Lv, G.R.; Wen, J.Q.; Bian, J.T.; Ye, Q.; Sun, X.Q.; Yang, K.J. High power linearly polarized diode-side-pumped Nd:YAG laser based on an asymmetric flat-flat resonator with the variable working point. Opt. Commun. 2022, 520, 128453. [Google Scholar] [CrossRef]
- Liu, H.Y.; Bian, Q.; Bo, Y.; Zong, N.; Peng, Q.J. Compact 200 W level linearly polarized microsecond-pulse Nd:YAG oscillator with nearly diffraction-limited beam quality. Appl. Opt. 2022, 61, 5614–5618. [Google Scholar] [CrossRef]
- Palomar, T.; Oujja, M.; Llorente, I.; Barat, B.R.; Canamares, M.V.; Cano, E.; Castillejo, M. Evaluation of laser cleaning for the restoration of tarnished silver artifacts. Appl. Surf. Sci. 2016, 387, 118–127. [Google Scholar] [CrossRef]
- Zhu, G.D.; Wang, S.R.; Cheng, W.; Wang, G.Q.; Liu, W.T.; Ren, Y. Investigation on the Surface Properties of 5A12 Aluminum Alloy after Nd: YAG Laser Cleaning. Coatings 2019, 9, 578. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, L.M.; Li, J.F.; Cheng, W.; Ma, X.Q. The Surface Properties of an Aviation Aluminum Alloy after Laser Cleaning. Coatings 2022, 12, 273. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, L.M.; Ma, M.L.; Cheng, W.; Li, B.L.; Lou, Y.X.; Li, J.F.; Ma, X.Q. Stepwise Removal Process Analysis Based on Layered Corrosion Oxides. Materials 2022, 15, 7559. [Google Scholar] [CrossRef]
- Afifi, H.A.M.; Abdel-Ghani, M.; Mahmoud, R.; Alkallas, F.H.; Trabelsi, A.B.G.; Mostafa, A.M. Comparative Study between First and Second Harmonics of a Nd:YAG Laser for Cleaning Manifestation Damages That Appeared in Pigments Used on Archaeological Cartonnage. Micromachines 2023, 14, 1415. [Google Scholar] [CrossRef]
- Hodson, N.; Weber, H. Optical Resonators: Fundamentals; Springer: Berlin/Heidelberg, Germany, 1997; pp. 423–494. [Google Scholar]
- Yuan, X.D.; Zhang, L.; Hu, Z.G.; Liu, Y.N.; Zhang, Z.Y.; Yu, H.J.; Wu, P.; Wang, L.R.; Zhao, W.F.; Wang, Y.B.; et al. High power fiber-coupled acousto-optically Q-switched 532 nm laser with a side-pumped Nd:YAG laser module. J. Opt. Technol. 2017, 84, 373–376. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zhang, Z.Y.; Liang, H.; Gao, J.C.; Qu, S.C.; Lin, X.C. Exploration on hold-off capacity of high power repetitively acousto-optic Q-switched Nd:YAG rod laser. Optik 2019, 185, 161–167. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, S.K.; Mukhopadhyay, P.K.; Bindra, K.S. 260 W of average green beam generation by intracavity frequency-doubled acousto-optic Q-Switched Nd:YAG laser. J. Opt.-India 2019, 48, 512–519. [Google Scholar] [CrossRef]
- Li, Y.G.; Yuan, Z.G.; Wang, J.; Xu, Q. Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes. Opt. Laser Technol. 2017, 91, 149–158. [Google Scholar] [CrossRef]
Laser | λ (nm) | Pav (W) | R. R (kHz) | Ep (mJ) | Pp (kW) | tp (ns) | M2 | ηf (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Nd:YAG/AO | 1064 | 783 | 15 | 52.2 | 483 | 108 | 19 | 94 | This work |
Nd:YAG/AO | 1064 | 447 | 10 | 44.7 | 588 | 76 | 22 | [18] | |
Nd:YAG/AO | 1064 | 1022 | 20 | 51.1 | 500 | 102 | 35.4 | 82–92 | [17] |
Nd:YAG/AO/LBO | 532 | 165 | 20 | 8.25 | 51.6 | 160 | 90.3% | [27] | |
Nd:YAG/AO | 1064 | 408 | 15 | 27.2 | 344 | 79 | 24.6 | [28] | |
Nd:YAG/AO/LBO | 532 | 260 | 18 | 14.4 | 198 | 73 | 35 | [29] |
Type of Laser | λ (nm) | Dcorre (μm) | Pave (W) | R. R (kHz) | Ep (mJ) | tp (ns) | Pp (kW) |
---|---|---|---|---|---|---|---|
Nd:YAG laser | 1064 | 400 | 500 | 15 | 33.3 | 108 | 308 |
Fiber laser | 1070 | 200 | 500 | 11 | 45.5 | 500 | 91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ma, X.; Ren, Y.; Wang, J.; Cheng, W. Fiber Coupled High Power Nd:YAG Laser for Nondestructive Laser Cleaning. Photonics 2023, 10, 901. https://doi.org/10.3390/photonics10080901
Wang X, Ma X, Ren Y, Wang J, Cheng W. Fiber Coupled High Power Nd:YAG Laser for Nondestructive Laser Cleaning. Photonics. 2023; 10(8):901. https://doi.org/10.3390/photonics10080901
Chicago/Turabian StyleWang, Xiaolei, Xinqiang Ma, Yuan Ren, Jingwen Wang, and Wei Cheng. 2023. "Fiber Coupled High Power Nd:YAG Laser for Nondestructive Laser Cleaning" Photonics 10, no. 8: 901. https://doi.org/10.3390/photonics10080901
APA StyleWang, X., Ma, X., Ren, Y., Wang, J., & Cheng, W. (2023). Fiber Coupled High Power Nd:YAG Laser for Nondestructive Laser Cleaning. Photonics, 10(8), 901. https://doi.org/10.3390/photonics10080901