A High-Sensitivity Bimetallic Grating-Coupled Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials
Abstract
:1. Introduction
2. Theoretical Analysis
3. Experimental Structure and Optimization
3.1. Structural Modeling
3.2. The Effect of Grating Period on Sensor Performance
3.3. Effect of Grating Duty Ratio on Sensor Performance
3.4. The Effect of Grating Depth on the Sensor
3.5. Effect of Trapezoidal Parameters on Sensor Performance
4. GCSPR Sensors with Surface Coating
4.1. Selection of Metal Layers
4.2. Selection of Two-Dimensional Material Layer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaudhary, V.S.; Kumar, D.; Kumar, S. SPR-Assisted Photonic Crystal Fiber-Based Dual-Wavelength Single Polarizing Filter With Improved Performance. IEEE Trans. Plasma Sci. 2021, 49, 3803–3810. [Google Scholar] [CrossRef]
- Guo, X. Surface plasmon resonance based biosensor technique: A review. J. Biophotonics 2012, 5, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Hu, C. Surface plasmon resonance sensor based on diffraction grating with high sensitivity and high resolution. Opt. Z. Licht Elektron. J. Light-Electronoptic 2011, 122, 1881–1884. [Google Scholar] [CrossRef]
- Jory, M.J.; Bradberry, G.W.; Cann, P.S.; Sambles, J.R. A surface-plasmon-based optical sensor using acousto-optics. Meas. Sci. Technol. 1995, 6, 1193–1200. [Google Scholar] [CrossRef]
- Kong, L.; Lv, J.; Gu, Q.; Ying, Y.; Jiang, X.; Si, G. Sensitivity-Enhanced SPR Sensor Based on Graphene and Subwavelength Silver Gratings. Nanomaterials 2020, 10, 2125. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, T.; Afsheen, S. One Dimensional Plasmonic Grating: High Sensitive Biosensor. Plasmonics 2017, 12, 19–25. [Google Scholar] [CrossRef]
- Abutoama, M.; Abdulhalim, I. Self-referenced biosensor based on thin dielectric grating combined with thin metal film. Opt. Express 2015, 23, 28667–28682. [Google Scholar] [CrossRef]
- Maurya, J.B.; Prajapati, Y.K.; Singh, V.; Saini, J.P. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer. Appl. Phys. A 2015, 121, 525–533. [Google Scholar] [CrossRef]
- Ludovic, S.; Live, O.R.B.; Masson, J.-F. Propagating surface plasmon resonance on microhole arrays. Anal. Chem. 2010, 82, 3780–3787. [Google Scholar]
- Zhang, P.; Wang, J.; Chen, G.; Shen, J.; Li, C.; Tang, T. A High-Sensitivity SPR Sensor with Bimetal/Silicon/Two-Dimensional Material Structure: A Theoretical Analysis. Photonics 2021, 8, 270. [Google Scholar] [CrossRef]
- Jin, Z.; Guan, W.; Liu, C.; Xue, T.; Wang, Q.; Zheng, W.; Cui, X. A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film. Appl. Surf. Sci. 2016, 377, 207–212. [Google Scholar] [CrossRef]
- Shalabney, A.; Abdulhalim, I. Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt. Lett. 2012, 37, 1175–1177. [Google Scholar] [CrossRef]
- Verma, A.; Prakash, A.; Tripathi, R. Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt. Commun. 2015, 357, 106–112. [Google Scholar] [CrossRef]
- Gupta, G.; Sugimoto, M.; Matsui, Y.; Kondoh, J. Use of a low refractive index prism in surface plasmon resonance biosensing. Sens. Actuators B Chem. 2008, 130, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Cullen, D.C.; Lowe, C.R. A direct surface plasmon—Polariton immunosensor: Preliminary investigation of the non-specific adsorption of serum components to the sensor interface. Sens. Actuators B Chem. 1990, 1, 576–579. [Google Scholar] [CrossRef]
- Lawrence, C.R.; Geddes, N.J.; Furlong, D.N.; Sambles, J.R. Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings. Biosens. Bioelectron. 1996, 11, 389–400. [Google Scholar] [CrossRef]
- Guo, Y.; Singh, N.M.; Das, C.M.; Wei, K.; Li, K.; Coquet, P.; Yong, K.-T. Effect of ultra-shallow metallic gratings on sensitivity enhancement of Goos-Hänchen shift in SPR-based sensors. Optik 2020, 224, 165690. [Google Scholar] [CrossRef]
- Dhawan, A.; Canva, M.; Vo-Dinh, T. Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt. Express 2011, 19, 787–813. [Google Scholar] [CrossRef] [Green Version]
- Teotia, P.K.; Kaler, R.S. Multilayer with periodic grating based high performance SPR waveguide sensor. Opt. Commun. 2017, 395, 154–158. [Google Scholar] [CrossRef]
- Hu, C.; Liu, D. High-performance Grating Coupled Surface Plasmon Resonance Sensor Based on Al-Au Bimetallic Layer. Mod. Appl. Sci. 2010, 4, 8–13. [Google Scholar] [CrossRef]
- Lin, K.; Lu, Y.; Chen, J.; Zheng, R.; Wang, P.; Ming, H. Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Opt. Express 2008, 16, 18599–18604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, D.; Lu, Y.; Lin, K.; Wang, P.; Ming, H. Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM). Opt. Express 2008, 16, 14597–14602. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, M.; Jahns, S.; Gerken, M. Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures. Photonics Nanostruct.-Fundam. Appl. 2017, 26, 69–79. [Google Scholar] [CrossRef]
- Fossati, S.; Hageneder, S.; Menad, S.; Maillart, E.; Dostalek, J. Multiresonant plasmonic nanostructure for ultrasensitive fluorescence biosensing. Nanophotonics 2020, 9, 3673–3685. [Google Scholar] [CrossRef]
- Patko, D.; Gyorgy, B.; Nemeth, A.; Szabó-Taylor, K.E.; Kittel, A.; Buzas, E.I.; Horvath, R. Label-free optical monitoring of surface adhesion of extracellular vesicles by grating coupled interferometry. Sens. Actuators B Chem. 2013, 188, 697–701. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.Y.; Chiu, N.F.; Chen, C.P.; Chang, C.C.; Chen, C.Y. Simultaneous Real-Time Detection of Pregnancy-Associated Plasma Protein-A and -A2 Using a Graphene Oxide-Based Surface Plasmon Resonance Biosensor. Int. J. Nanomed. 2020, 15, 2085–2094. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Kouzani, A.Z. Variable incidence angle subwavelegth grating SPR graphene biosensor. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2013, 2013, 3024–3027. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Liu, Q.; Masson, J.-F.; Peng, W. Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing. Opt. Express 2015, 23, 20540–20548. [Google Scholar] [CrossRef]
- Vala, M.; Baldini, F.; Dostálek, J.; Homola, J.; Lieberman, R.A.; Homola, J.; Miler, M. Diffraction grating-coupled surface plasmon resonance sensor based on spectroscopy of long-range and short-range surface plasmons. In Optical Sensing Technology and Applications; SPIE: Bellingham, WA, USA, 2007; Volume 6585, pp. 557–565. [Google Scholar]
- Alleyne, C.J.; Kirk, A.G.; McPhedran, R.C.; Nicorovici, N.-A.P.; Maystre, D. Enhanced SPR sensitivity using periodic metallic structures. Opt. Express 2007, 15, 8163–8169. [Google Scholar] [CrossRef]
- Nazem, S.; Malekmohammad, M.; Soltanolkotabi, M. Theoretical and experimental study of a surface plasmon sensor based on Ag-MgF2 grating coupler. Appl. Phys. B 2020, 126, 96. [Google Scholar] [CrossRef]
- Zheng, G.; Chen, Y.; Xu, L.; Lai, M. Optical characteristics of subwavelength metallic grating coupled porous film surface plasmon resonance sensor with high sensitivity. Optik 2013, 124, 4725–4728. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Shirkani, H. High-Performance Label-Free Near-Infrared SPR Sensor for Wide Range of Gases and Biomolecules Based on Graphene-Gold Grating. Plasmonics 2019, 14, 1179–1188. [Google Scholar] [CrossRef]
- Bijalwan, A.; Rastogi, V. Sensitivity enhancement of a conventional gold grating assisted surface plasmon resonance sensor by using a bimetallic configuration. Appl. Opt. 2017, 56, 9606–9612. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, H.; Wang, H.; Lu, Y.; Wang, P. Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing. Opt. Commun. 2018, 416, 66–70. [Google Scholar] [CrossRef]
- Yeung, W.K.; Chen, H.-Y.; Sun, J.-J.; Hsieh, T.-H.; Mousavi, M.Z.; Chen, H.-H.; Lee, K.-L.; Lin, H.; Wei, P.-K.; Cheng, J.-Y. Multiplex detection of urinary miRNA biomarkers by transmission surface plasmon resonance. Analyst 2018, 143, 4715–4722. [Google Scholar] [CrossRef]
- Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [Google Scholar] [CrossRef]
- Homola, J.; Koudela, I.; Yee, S.S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: Sensitivity comparison. Sens. Actuators B Chem. 1999, 54, 16–24. [Google Scholar] [CrossRef]
- Long, S.; Cao, J.; Geng, S.; Xu, N.; Qian, W.; Gao, S. Optimization of plasmonic sensors based on sinusoidal and rectangular gratings. Opt. Commun. 2020, 476, 126310. [Google Scholar] [CrossRef]
- Su, W.; Zheng, G.; Li, X. Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating. Opt. Commun. 2012, 285, 4603–4607. [Google Scholar] [CrossRef]
- Nenninger, G.G.; Piliarik, M.; Homola, J. Data analysis for optical sensors based on spectroscopy of surface plasmons. Meas. Sci. Technol. 2002, 13, 2038–2046. [Google Scholar] [CrossRef]
- Liu, Z.; He, J.; He, S. Characterization and Sensing of Inert Gases with a High-Resolution SPR Sensor. Sensors 2020, 20, 3295. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, B.; Lin, B.; Qiu, J.; Li, P.; Pepper, J.; Hugh, B. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sens. Actuators B Chem. 2002, 85, 219–226. [Google Scholar] [CrossRef]
- Pasqua, J.; Lawrence, G.; Varma, M.; Regnier, F.; Cho, W.; Nolte, D.; Zhao, M. High-Speed Interferometric Detection of Label-Free Immunoassays on the Biological Compact Disc. Clin. Chem. 2006, 52, 2135–2140. [Google Scholar] [CrossRef]
- Giannios, P.; Toutouzas, K.G.; Matiatou, M.; Stasinos, K.; Konstadoulakis, M.M.; Zografos, G.C.; Moutzouris, K. Visible to near-infrared refractive properties of freshly-excised human-liver tissues: Marking hepatic malignancies. Sci. Rep. 2016, 6, 27910. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Sun, S.; Wu, M.; Gao, S.; Cao, J. Refractive index sensing using the metal layer in DVD-R discs. RSC Adv. 2018, 8, 27423–27428. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Shojaeihagh, N.; Shirkani, H. Multiple-step graphene grating optical sensors based on surface plasmons in IR range for ultra-sensing biomolecules. Mater. Sci. Eng. B 2021, 265, 114988. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Liu, J.; Yang, H. A Ag–Au bimetallic nanograting surface plasmon resonance sensor based on a prism structure. Opt. Commun. 2020, 461, 125105. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, J.; Zhang, Y.; Ge, M.; Zhang, P.; Shen, J.; Li, C. Self-referenced refractive index sensor based on double-dips method with bimetal-dielectric and double-groove grating. Opt. Express 2022, 30, 8376. [Google Scholar] [CrossRef]
Structure | Sensitivity (Deg/RIU) | FWHM (Degree) | FOM (RIU−1) | FA | FOM+ | Reference |
---|---|---|---|---|---|---|
LaSF35/MgF2 grating/Na/Au grating/ZnS | 329 | 3.30 | 338.68 | 0.79 | 270.94 | [49] |
Au/Al grating | 187 | 0.93 | 201 | 0.95 | 190.95 | [3] |
Au grating | 237 | 0.9 | 263.3 | 0.80 | 210.64 | [22] |
Al grating | 247.2 | 0.76 | 352.26 | 0.90 | 317.03 | [40] |
BK7/graphene/Ag grating | 220.67 | 7.093 | 31.11 | 0.81 | 25.20 | [5] |
Ag/Au grating | 346 | 3.55 | 97.46 | 0.85 | 82.85 | [34] |
Au/Ag grating | 395.5 | 0.93 | 425.2 | 0.98 | 416.7 | This work |
GO/Au/Ag grating | 350 | 0.71 | 492.95 | 0.96 | 473.23 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Tong, C.; Guo, X.; Li, Z.; Shen, J.; Li, C. A High-Sensitivity Bimetallic Grating-Coupled Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials. Photonics 2023, 10, 899. https://doi.org/10.3390/photonics10080899
Wang H, Tong C, Guo X, Li Z, Shen J, Li C. A High-Sensitivity Bimetallic Grating-Coupled Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials. Photonics. 2023; 10(8):899. https://doi.org/10.3390/photonics10080899
Chicago/Turabian StyleWang, Hui, Chenghao Tong, Xiaowan Guo, Zhiqi Li, Jian Shen, and Chaoyang Li. 2023. "A High-Sensitivity Bimetallic Grating-Coupled Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials" Photonics 10, no. 8: 899. https://doi.org/10.3390/photonics10080899
APA StyleWang, H., Tong, C., Guo, X., Li, Z., Shen, J., & Li, C. (2023). A High-Sensitivity Bimetallic Grating-Coupled Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials. Photonics, 10(8), 899. https://doi.org/10.3390/photonics10080899